IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v333y2024i1d10.1007_s10479-023-05780-x.html
   My bibliography  Save this article

Two-agent scheduling in a two-machine open shop

Author

Listed:
  • Peihai Liu

    (East China University of Science and Technology)

  • Manzhan Gu

    (Shanghai University of Finance and Economics)

  • Xiwen Lu

    (East China University of Science and Technology)

Abstract

This paper considers several two-machine open shop problems with two agents. Each agent has an independent set of nonpreemptive jobs, and the objective is to find either a schedule minimizing a linear combination of the makespans of both agents, a schedule minimizing the makespan of one agent with the makespan of the other agent not exceeding a threshold, or all Pareto-optimal schedules with respect to the makespans of both agents. We present a number of results for the problems above, including a polynomial algorithm and a pseudo-polynomial algorithm for special cases, non-approximability, two approximation algorithms, and a fully polynomial-time approximation scheme. Finally, we run numerical experiments to show the effectiveness of the pseudo-polynomial algorithm and the approximation algorithms.

Suggested Citation

  • Peihai Liu & Manzhan Gu & Xiwen Lu, 2024. "Two-agent scheduling in a two-machine open shop," Annals of Operations Research, Springer, vol. 333(1), pages 275-301, February.
  • Handle: RePEc:spr:annopr:v:333:y:2024:i:1:d:10.1007_s10479-023-05780-x
    DOI: 10.1007/s10479-023-05780-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05780-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05780-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenchang Luo & Lin Chen & Guochuan Zhang, 2012. "Approximation schemes for two-machine flow shop scheduling with two agents," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 229-239, October.
    2. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    3. Mor, Baruch & Mosheiov, Gur, 2010. "Scheduling problems with two competing agents to minimize minmax and minsum earliness measures," European Journal of Operational Research, Elsevier, vol. 206(3), pages 540-546, November.
    4. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    5. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    6. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    7. Nong, Q.Q. & Cheng, T.C.E. & Ng, C.T., 2011. "Two-agent scheduling to minimize the total cost," European Journal of Operational Research, Elsevier, vol. 215(1), pages 39-44, November.
    8. B Mor & G Mosheiov, 2014. "Polynomial time solutions for scheduling problems on a proportionate flowshop with two competing agents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(1), pages 151-157, January.
    9. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
    10. Cheng He & Chunqi Xu & Hao Lin, 2020. "Serial-batching scheduling with two agents to minimize makespan and maximum cost," Journal of Scheduling, Springer, vol. 23(5), pages 609-617, October.
    11. A. Agnetis & P.B. Mirchandani & D. Pacciarelli & A. Pacifici, 2000. "Nondominated Schedules for a Job-Shop with Two Competing Users," Computational and Mathematical Organization Theory, Springer, vol. 6(2), pages 191-217, July.
    12. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    13. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    14. Yin, Yunqiang & Cheng, Shuenn-Ren & Cheng, T.C.E. & Wang, Du-Juan & Wu, Chin-Chia, 2016. "Just-in-time scheduling with two competing agents on unrelated parallel machines," Omega, Elsevier, vol. 63(C), pages 41-47.
    15. Yuan Gao & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2022. "Pareto-scheduling with family jobs or ND-agent on a parallel-batch machine to minimize the makespan and maximum cost," 4OR, Springer, vol. 20(2), pages 273-287, June.
    16. Balasubramanian, Hari & Fowler, John & Keha, Ahmet & Pfund, Michele, 2009. "Scheduling interfering job sets on parallel machines," European Journal of Operational Research, Elsevier, vol. 199(1), pages 55-67, November.
    17. Choi, Byung-Cheon & Park, Myoung-Ju, 2017. "Two-agent parallel machine scheduling with a restricted number of overlapped reserved tasks," European Journal of Operational Research, Elsevier, vol. 260(2), pages 514-519.
    18. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    2. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    3. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    4. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    5. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    6. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    7. Tifenn Rault & Faiza Sadi & Jean-Charles Billaut & Ameur Soukhal, 2024. "Scheduling two interfering job sets on identical parallel machines with makespan and total completion time minimization," Journal of Scheduling, Springer, vol. 27(5), pages 485-505, October.
    8. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    9. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    10. Vahid Nasrollahi & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2022. "Minimizing the weighted sum of maximum earliness and maximum tardiness in a single-agent and two-agent form of a two-machine flow shop scheduling problem," Operational Research, Springer, vol. 22(2), pages 1403-1442, April.
    11. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
    12. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    13. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
    14. Xiaoling Cao & Wen-Hsing Wu & Wen-Hung Wu & Chin-Chia Wu, 2018. "Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times," Operational Research, Springer, vol. 18(2), pages 293-314, July.
    15. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    16. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    17. Yaodong Ni & Zhaojun Zhao, 2017. "Two-agent scheduling problem under fuzzy environment," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 739-748, March.
    18. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    19. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    20. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:333:y:2024:i:1:d:10.1007_s10479-023-05780-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.