IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v326y2023i1d10.1007_s10479-023-05366-7.html
   My bibliography  Save this article

Reducing incompatibility in a local AHP-group decision making context

Author

Listed:
  • Juan Aguarón

    (Universidad de Zaragoza)

  • María Teresa Escobar

    (Universidad de Zaragoza)

  • José María Moreno-Jiménez

    (Universidad de Zaragoza)

Abstract

In the context of local analytic hierarchy process-group decision making (AHP-GDM), this paper presents a theoretical framework and a semi-automatic procedure for reducing incompatibility between the actors involved in the decision making process and the collective position. The row geometric mean is employed as the prioritisation procedure and the geometric compatibility index ( $$\textrm{GCOMPI}$$ GCOMPI ) as the incompatibility measure; individual pairwise comparison matrices are considered as the input of the reduction process, whilst the collective vector is the output. The reduction is attained by slightly modifying, in relative terms, the judgements of the collective pairwise comparison matrix, irrespective of the method used to obtain it, that further improve the $$\textrm{GCOMPI}$$ GCOMPI . The resulting judgements of the collective matrix and the associated collective priorities are close to the initial collective values. The procedure does not modify the judgements of the initial individual matrices and this simplifies the process of reaching consensus. A simulation analysis is utilised to study the performance of the algorithm along with an illustrative numerical example. The analysis proves that the proposed algorithm is easy to implement and efficient, it provides mathematically closed results and significantly reduces the $$\textrm{GCOMPI}$$ GCOMPI associated with the precise consistency consensus matrix which is one of the AHP-GDM tools. The framework allows the procedure to be adapted to specific interests.

Suggested Citation

  • Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2023. "Reducing incompatibility in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 326(1), pages 1-26, July.
  • Handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05366-7
    DOI: 10.1007/s10479-023-05366-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05366-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05366-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 2003. "Decision-making with the AHP: Why is the principal eigenvector necessary," European Journal of Operational Research, Elsevier, vol. 145(1), pages 85-91, February.
    2. S. Lipovetsky, 2009. "Global Priority Estimation in Multiperson Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 77-91, January.
    3. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    4. Ho, William & Ma, Xin, 2018. "The state-of-the-art integrations and applications of the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 267(2), pages 399-414.
    5. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    6. Aguaron, Juan & Escobar, Maria Teresa & Moreno-Jimenez, Jose Maria, 2003. "Consistency stability intervals for a judgement in AHP decision support systems," European Journal of Operational Research, Elsevier, vol. 145(2), pages 382-393, March.
    7. Aguarón, Juan & Escobar, María Teresa & Moreno-Jiménez, José María, 2021. "Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 288(2), pages 576-583.
    8. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    9. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    10. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
    11. Alberto Turón & Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2019. "A Decision Support System and Visualisation Tools for AHP-GDM," International Journal of Decision Support System Technology (IJDSST), IGI Global, vol. 11(1), pages 1-19, January.
    12. Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez & Manuel Salvador, 2019. "Homogeneous Groups of Actors in an AHP-Local Decision Making Context: A Bayesian Analysis," Mathematics, MDPI, vol. 7(3), pages 1-13, March.
    13. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2019. "AHP-Group Decision Making Based on Consistency," Mathematics, MDPI, vol. 7(3), pages 1-15, March.
    14. Escobar, M. T. & Aguaron, J. & Moreno-Jimenez, J. M., 2004. "A note on AHP group consistency for the row geometric mean priorization procedure," European Journal of Operational Research, Elsevier, vol. 153(2), pages 318-322, March.
    15. María Teresa Escobar & José María Moreno-jiménez, 2007. "Aggregation of Individual Preference Structures in Ahp-Group Decision Making," Group Decision and Negotiation, Springer, vol. 16(4), pages 287-301, July.
    16. Natalie M. Scala & Jayant Rajgopal & Luis G. Vargas & Kim LaScola Needy, 2016. "Group Decision Making with Dispersion in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 25(2), pages 355-372, March.
    17. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2022. "Geometric Compatibility Indexes in a Local AHP-Group Decision Making Context: A Framework for Reducing Incompatibility," Mathematics, MDPI, vol. 10(2), pages 1-20, January.
    18. Ramanathan, R. & Ganesh, L. S., 1994. "Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages," European Journal of Operational Research, Elsevier, vol. 79(2), pages 249-265, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2019. "AHP-Group Decision Making Based on Consistency," Mathematics, MDPI, vol. 7(3), pages 1-15, March.
    2. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
    3. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    4. Jahangir Wasim & Vijay Vyas & Pietro Amenta & Antonio Lucadamo & Gabriella Marcarelli & Alessio Ishizaka, 2023. "Deriving the weights for aggregating judgments in a multi-group problem: an application to curriculum development in entrepreneurship," Annals of Operations Research, Springer, vol. 326(2), pages 853-877, July.
    5. José María Moreno-Jiménez & Manuel Salvador & Pilar Gargallo & Alfredo Altuzarra, 2016. "Systemic decision making in AHP: a Bayesian approach," Annals of Operations Research, Springer, vol. 245(1), pages 261-284, October.
    6. Jerónimo Aznar & Francisco Guijarro & José Moreno-Jiménez, 2011. "Mixed valuation methods: a combined AHP-GP procedure for individual and group multicriteria agricultural valuation," Annals of Operations Research, Springer, vol. 190(1), pages 221-238, October.
    7. Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez & Manuel Salvador, 2022. "Identification of Homogeneous Groups of Actors in a Local AHP-Multiactor Context with a High Number of Decision-Makers: A Bayesian Stochastic Search," Mathematics, MDPI, vol. 10(3), pages 1-20, February.
    8. Manuel Salvador & Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez, 2015. "A Bayesian Approach to Maximising Inner Compatibility in AHP-Systemic Decision Making," Group Decision and Negotiation, Springer, vol. 24(4), pages 655-673, July.
    9. Aguarón, Juan & Escobar, María Teresa & Moreno-Jiménez, José María, 2021. "Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 288(2), pages 576-583.
    10. Changsheng Lin & Gang Kou & Yi Peng & Fawaz E. Alsaadi, 2022. "Aggregation of the nearest consistency matrices with the acceptable consensus in AHP-GDM," Annals of Operations Research, Springer, vol. 316(1), pages 179-195, September.
    11. S. Lipovetsky, 2009. "Global Priority Estimation in Multiperson Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 77-91, January.
    12. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    13. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    14. Gerda Ana Melnik-Leroy & Gintautas Dzemyda, 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases," Mathematics, MDPI, vol. 9(2), pages 1-25, January.
    15. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    16. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    17. de Luca, Stefano, 2014. "Public engagement in strategic transportation planning: An analytic hierarchy process based approach," Transport Policy, Elsevier, vol. 33(C), pages 110-124.
    18. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    19. Brunelli, Matteo & Fedrizzi, Michele, 2024. "Inconsistency indices for pairwise comparisons and the Pareto dominance principle," European Journal of Operational Research, Elsevier, vol. 312(1), pages 273-282.
    20. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2022. "Geometric Compatibility Indexes in a Local AHP-Group Decision Making Context: A Framework for Reducing Incompatibility," Mathematics, MDPI, vol. 10(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05366-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.