IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v322y2023i1d10.1007_s10479-022-04739-8.html
   My bibliography  Save this article

Simultaneous scheduling of replacement and repair of common components in operating systems

Author

Listed:
  • Gabrijela Obradović

    (Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg)

  • Ann-Brith Strömberg

    (Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg)

  • Kristian Lundberg

    (Saab AB, Linköping & Chalmers University of Technology)

Abstract

In order for a system to stay operational, its components need maintenance. We consider two stakeholders—a system operator and a maintenance workshop—and a contract governing their joint activities. Components in the operating systems that are to be maintained are sent to the maintenance workshop, which should perform all maintenance activities on time in order to satisfy the contract. The maintained components are then sent back to be used in the operating systems. Our modeling of this system-of-systems includes stocks of damaged and repaired components, the workshop scheduling, and the planning of preventive maintenance for the operating systems. Our modeling is based on a mixed-binary linear optimization (MBLP) model of a preventive maintenance scheduling problem with so-called interval costs over a finite and discretized time horizon. We generalize and extend this model with the flow of components through the workshop, including the stocks of spare components. The resulting scheduling model—a mixed-integer optimization (MILP) model—is then utilized to optimize the main contract in a bi-objective setting: maximizing the availability of repaired (or new) components and minimizing the costs of maintaining the operating systems over the time horizon. We analyze the main contract and briefly discuss a turn-around time contract. Our results concern the effect of our modeling on the levels of the stocks of components over time, in particular minimizing the risk for lack of spare components.

Suggested Citation

  • Gabrijela Obradović & Ann-Brith Strömberg & Kristian Lundberg, 2023. "Simultaneous scheduling of replacement and repair of common components in operating systems," Annals of Operations Research, Springer, vol. 322(1), pages 147-165, March.
  • Handle: RePEc:spr:annopr:v:322:y:2023:i:1:d:10.1007_s10479-022-04739-8
    DOI: 10.1007/s10479-022-04739-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04739-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04739-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    2. Gavranis, Andreas & Kozanidis, George, 2015. "An exact solution algorithm for maximizing the fleet availability of a unit of aircraft subject to flight and maintenance requirements," European Journal of Operational Research, Elsevier, vol. 242(2), pages 631-643.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    2. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    3. Baptiste, Philippe & Sadykov, Ruslan, 2010. "Time-indexed formulations for scheduling chains on a single machine: An application to airborne radars," European Journal of Operational Research, Elsevier, vol. 203(2), pages 476-483, June.
    4. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    5. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    6. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    7. Pasquale Avella & Maurizio Boccia & Bernardo D’Auria, 2005. "Near-Optimal Solutions of Large-Scale Single-Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 183-191, May.
    8. Carlos Lagos & Felipe Delgado & Mathias A. Klapp, 2020. "Dynamic Optimization for Airline Maintenance Operations," Transportation Science, INFORMS, vol. 54(4), pages 998-1015, July.
    9. Agnetis, Alessandro & Bianciardi, Caterina & Iasparra, Nicola, 2019. "Integrating lean thinking and mathematical optimization: A case study in appointment scheduling of hematological treatments," Operations Research Perspectives, Elsevier, vol. 6(C).
    10. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Integrated optimization of test case selection and sequencing for reliability testing of the mainboard of Internet backbone routers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 183-194.
    11. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    12. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
    13. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    14. Natashia Boland & Riley Clement & Hamish Waterer, 2016. "A Bucket Indexed Formulation for Nonpreemptive Single Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 14-30, February.
    15. Rachid Benmansour & Oliver Braun & Saïd Hanafi, 2019. "The single-processor scheduling problem with time restrictions: complexity and related problems," Journal of Scheduling, Springer, vol. 22(4), pages 465-471, August.
    16. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    18. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    19. Elendner, Thomas, 2003. "Scheduling and combinatorial auctions: Lagrangean relaxation-based bonds for the WJISP," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 570, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Stéphane Dauzère-Pérès & Sigrid Lise Nonås, 2023. "An improved decision support model for scheduling production in an engineer-to-order manufacturer," 4OR, Springer, vol. 21(2), pages 247-300, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:322:y:2023:i:1:d:10.1007_s10479-022-04739-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.