IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v316y2022i2d10.1007_s10479-019-03466-x.html
   My bibliography  Save this article

A MIP-CP based approach for two- and three-dimensional cutting problems with staged guillotine cuts

Author

Listed:
  • Oliviana Xavier Nascimento

    (Federal University of Goiás)

  • Thiago Alves Queiroz

    (Federal University of Goiás)

  • Leonardo Junqueira

    (University of São Paulo)

Abstract

This work presents guillotine constraints for two- and three-dimensional cutting problems. These problems look for a subset of rectangular items of maximum value that can be cut from a single rectangular container. Guillotine constraints seek to ensure that items are arranged in such a way that cuts from one edge of the container to the opposite edge completely separate them. In particular, we consider the possibility of 2, 3, and 4 cutting stages in a predefined sequence. These constraints are considered within a two-level iterative approach that combines the resolution of integer linear programming and constraint programming models. Experiments with instances of the literature are carried out, and the results show that the proposed approach can solve in less than 500 s approximately 60% and 50% of the instances for the two- and three-dimensional cases, respectively. For the two-dimensional case, in comparison with the recent literature, it was possible to improve the upper bound for 16% of the instances.

Suggested Citation

  • Oliviana Xavier Nascimento & Thiago Alves Queiroz & Leonardo Junqueira, 2022. "A MIP-CP based approach for two- and three-dimensional cutting problems with staged guillotine cuts," Annals of Operations Research, Springer, vol. 316(2), pages 805-835, September.
  • Handle: RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-019-03466-x
    DOI: 10.1007/s10479-019-03466-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03466-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03466-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    2. Tobias Fanslau & Andreas Bortfeldt, 2010. "A Tree Search Algorithm for Solving the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 222-235, May.
    3. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    4. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    5. Alyne Toscano & Socorro Rangel & Horacio Hideki Yanasse, 2017. "A heuristic approach to minimize the number of saw cycles in small-scale furniture factories," Annals of Operations Research, Springer, vol. 258(2), pages 719-746, November.
    6. Sándor P. Fekete & Jörg Schepers & Jan C. van der Veen, 2007. "An Exact Algorithm for Higher-Dimensional Orthogonal Packing," Operations Research, INFORMS, vol. 55(3), pages 569-587, June.
    7. Velasco, André Soares & Uchoa, Eduardo, 2019. "Improved state space relaxation for constrained two-dimensional guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 106-120.
    8. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    9. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    10. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    11. Puchinger, Jakob & Raidl, Gunther R., 2007. "Models and algorithms for three-stage two-dimensional bin packing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1304-1327, December.
    12. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    13. David Pisinger & Mikkel Sigurd, 2007. "Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 36-51, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    3. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2022. "A cutting plane method and a parallel algorithm for packing rectangles in a circular container," European Journal of Operational Research, Elsevier, vol. 303(1), pages 114-128.
    4. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    5. Silva, Elsa & Alvelos, Filipe & Valério de Carvalho, J.M., 2010. "An integer programming model for two- and three-stage two-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 205(3), pages 699-708, September.
    6. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    7. Jianyu Long & Zhong Zheng & Xiaoqiang Gao & Panos M. Pardalos & Wanzhe Hu, 2020. "An effective heuristic based on column generation for the two-dimensional three-stage steel plate cutting problem," Annals of Operations Research, Springer, vol. 289(2), pages 291-311, June.
    8. Cui, Yaodong & Huang, Baixiong, 2012. "Reducing the number of cuts in generating three-staged cutting patterns," European Journal of Operational Research, Elsevier, vol. 218(2), pages 358-365.
    9. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    10. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    11. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    12. François Clautiaux & Ruslan Sadykov & François Vanderbeck & Quentin Viaud, 2019. "Pattern-based diving heuristics for a two-dimensional guillotine cutting-stock problem with leftovers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 265-297, September.
    13. Velasco, André Soares & Uchoa, Eduardo, 2019. "Improved state space relaxation for constrained two-dimensional guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 106-120.
    14. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    15. Parreño, F. & Alvarez-Valdes, R., 2021. "Mathematical models for a cutting problem in the glass manufacturing industry," Omega, Elsevier, vol. 103(C).
    16. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    17. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    18. Gregory S. Taylor & Yupo Chan & Ghulam Rasool, 2017. "A three-dimensional bin-packing model: exact multicriteria solution and computational complexity," Annals of Operations Research, Springer, vol. 251(1), pages 397-427, April.
    19. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    20. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-019-03466-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.