IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v316y2022i1d10.1007_s10479-021-04040-0.html
   My bibliography  Save this article

A remote sensing satellite observation scheme evaluation method based on granular computing of intuitionistic linguistic preference relation

Author

Listed:
  • Xiaoxuan Hu

    (Hefei University of Technology
    Ministry of Education)

  • Yanjun Wang

    (Hefei University of Technology
    Ministry of Education)

  • Haiquan Sun

    (Hefei University of Technology
    Ministry of Education)

  • Peng Jin

    (Hefei University of Technology
    Ministry of Education)

Abstract

With the sustainable development of remote sensing satellite observation technology, the effectiveness of the remote sensing satellite observation scheme has drawn wide attention in recent years. A suitable evaluation model can provide a credible improvement basis and guide observation technology’s continuous development. In this study, we present an original method based on granular computing to evaluate the remote sensing satellite observation schemes by employing intuitionistic linguistic preference relation, which is ideal for allowing evaluation team members to depict their actual opinions. The granulation of the intuitionistic linguistic preference relation is regarded as an optimization problem, solved by using the particle swarm optimization. The optimization criterion comprised of consensus and consistency is maximized by a suitable mapping of the intuitionistic linguistic preference relation on information granules. Once the granulation of the intuitionistic linguistic preference relation is completed, the solution to the evaluation problem is constructed by the selection process in virtue of the dominance levels of observation schemes and the prioritization relationship of evaluation team members. Finally, an experimental example about the evaluation of remote sensing satellite observation schemes is reported to support the feasibility and practicality of the proposed evaluation method. Furthermore, comparative analysis with other methods is also analyzed to further demonstrate the performance of the designed method.

Suggested Citation

  • Xiaoxuan Hu & Yanjun Wang & Haiquan Sun & Peng Jin, 2022. "A remote sensing satellite observation scheme evaluation method based on granular computing of intuitionistic linguistic preference relation," Annals of Operations Research, Springer, vol. 316(1), pages 343-364, September.
  • Handle: RePEc:spr:annopr:v:316:y:2022:i:1:d:10.1007_s10479-021-04040-0
    DOI: 10.1007/s10479-021-04040-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04040-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04040-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    2. Wen Jiang & Boya Wei, 2018. "Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(3), pages 582-594, February.
    3. F. J. Cabrerizo & S. Alonso & E. Herrera-Viedma, 2009. "A Consensus Model For Group Decision Making Problems With Unbalanced Fuzzy Linguistic Information," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 109-131.
    4. Cabrerizo, Francisco Javier & Herrera-Viedma, Enrique & Pedrycz, Witold, 2013. "A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts," European Journal of Operational Research, Elsevier, vol. 230(3), pages 624-633.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    2. Fu, Chao & Yang, Shan-Lin, 2010. "The group consensus based evidential reasoning approach for multiple attributive group decision analysis," European Journal of Operational Research, Elsevier, vol. 206(3), pages 601-608, November.
    3. Cabrerizo, Francisco Javier & Herrera-Viedma, Enrique & Pedrycz, Witold, 2013. "A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts," European Journal of Operational Research, Elsevier, vol. 230(3), pages 624-633.
    4. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    5. Pang, Jifang & Liang, Jiye, 2012. "Evaluation of the results of multi-attribute group decision-making with linguistic information," Omega, Elsevier, vol. 40(3), pages 294-301.
    6. Osama Khaled Alkhlaifat, 2019. "Exploration of Silence's Motives Towards the Work Decisions: The Case of Jordanian Public and Private Schools," Journal of Public Administration and Governance, Macrothink Institute, vol. 9(1), pages 266-289, March.
    7. Paul Tae-Woo Lee & Cheng-Wei Lin & Yi-Shih Chung, 2014. "Comparison analysis for subjective and objective weights of financial positions of container shipping companies," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(3), pages 241-250, May.
    8. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    9. Llamazares, Bonifacio & Pérez-Asurmendi, Patrizia, 2013. "Triple-acyclicity in majorities based on difference in support," MPRA Paper 52218, University Library of Munich, Germany.
    10. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    11. Zhou-Jing Wang & Yuhong Wang & Kevin W. Li, 2016. "An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 25(1), pages 181-202, January.
    12. Olga Porro & Francesc Pardo-Bosch & Núria Agell & Mónica Sánchez, 2020. "Understanding Location Decisions of Energy Multinational Enterprises within the European Smart Cities’ Context: An Integrated AHP and Extended Fuzzy Linguistic TOPSIS Method," Energies, MDPI, vol. 13(10), pages 1-29, May.
    13. Wang, Ying-Ming & Parkan, Celik, 2008. "Optimal aggregation of fuzzy preference relations with an application to broadband internet service selection," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1476-1486, June.
    14. Tsuen-Ho Hsu & Ling-Zhong Lin, 2021. "A Multidimensional Fuzzy Quality Function Deployment Design for Brand Experience Assessment of Convenience Stores," Mathematics, MDPI, vol. 9(20), pages 1-24, October.
    15. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    16. Peide Liu & Xiaoxiao Liu & Guiying Ma & Zhaolong Liang & Changhai Wang & Fawaz E. Alsaadi, 2020. "A Multi-Attribute Group Decision-Making Method Based on Linguistic Intuitionistic Fuzzy Numbers and Dempster–Shafer Evidence Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 499-524, April.
    17. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    18. Xunjie Gou & Zeshui Xu & Xinxin Wang & Huchang Liao, 2021. "Managing consensus reaching process with self-confident double hierarchy linguistic preference relations in group decision making," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 51-79, March.
    19. Chia-Hua Cheng & James J. H. Liou & Chui-Yu Chiu, 2017. "A Consistent Fuzzy Preference Relations Based ANP Model for R&D Project Selection," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    20. Tsuen-Ho Hsu & Li-Chu Hung & Jia-Wei Tang, 2012. "An analytical model for building brand equity in hospitality firms," Annals of Operations Research, Springer, vol. 195(1), pages 355-378, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:316:y:2022:i:1:d:10.1007_s10479-021-04040-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.