IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v299y2021i1d10.1007_s10479-019-03239-6.html
   My bibliography  Save this article

The multivariate mixture dynamics model: shifted dynamics and correlation skew

Author

Listed:
  • Damiano Brigo

    (Imperial College London)

  • Camilla Pisani

    (Nordea Bank)

  • Francesco Rapisarda

    (Bloomberg LP)

Abstract

The multi variate mixture dynamics model is a tractable, dynamical, arbitrage-free multivariate model characterized by transparency on the dependence structure, since closed form formulae for terminal correlations, average correlations and copula function are available. It also allows for complete decorrelation between assets and instantaneous variances. Each single asset is modelled according to a lognormal mixture dynamics model, and this univariate version is widely used in the industry due to its flexibility and accuracy. The same property holds for the multivariate process of all assets, whose density is a mixture of multivariate basic densities. This allows for consistency of single asset and index/portfolio smile. In this paper, we generalize the MVMD model by introducing shifted dynamics and we propose a definition of implied correlation under this model. We investigate whether the model is able to consistently reproduce the implied volatility of FX cross rates once the single components are calibrated to univariate shifted lognormal mixture dynamics models. We consider in particular the case of the Chinese Renminbi FX rate, showing that the shifted MVMD model correctly recovers the CNY/EUR smile given the EUR/USD smile and the USD/CNY smile, thus highlighting that the model can also work as an arbitrage free volatility smile extrapolation tool for cross currencies that may not be liquid or fully observable. We compare the performance of the shifted MVMD model in terms of implied correlation with those of the shifted simply correlated mixture dynamics model where the dynamics of the single assets are connected naively by introducing correlation among their Brownian motions. Finally, we introduce a model with uncertain volatilities and correlation. The Markovian projection of this model is a generalization of the shifted MVMD model.

Suggested Citation

  • Damiano Brigo & Camilla Pisani & Francesco Rapisarda, 2021. "The multivariate mixture dynamics model: shifted dynamics and correlation skew," Annals of Operations Research, Springer, vol. 299(1), pages 1411-1435, April.
  • Handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03239-6
    DOI: 10.1007/s10479-019-03239-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03239-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03239-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Damiano Brigo & Fabio Mercurio, 2002. "Lognormal-Mixture Dynamics And Calibration To Market Volatility Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 427-446.
    2. José Fonseca & Martino Grasselli & Claudio Tebaldi, 2007. "Option pricing when correlations are stochastic: an analytical framework," Review of Derivatives Research, Springer, vol. 10(2), pages 151-180, May.
    3. Damiano Brigo & Fabio Mercurio & Giulio Sartorelli, 2003. "Alternative asset-price dynamics and volatility smile," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 173-183.
    4. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Damiano Brigo & Francesco Rapisarda & Abir Sridi, 2013. "The arbitrage-free Multivariate Mixture Dynamics Model: Consistent single-assets and index volatility smiles," Papers 1302.7010, arXiv.org, revised Sep 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damiano Brigo & Francesco Rapisarda & Abir Sridi, 2013. "The arbitrage-free Multivariate Mixture Dynamics Model: Consistent single-assets and index volatility smiles," Papers 1302.7010, arXiv.org, revised Sep 2014.
    2. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach," Review of Derivatives Research, Springer, vol. 25(3), pages 233-281, October.
    3. Donald Aingworth & Sanjiv Das & Rajeev Motwani, 2006. "A simple approach for pricing equity options with Markov switching state variables," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 95-105.
    4. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    5. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    7. Anlong Li, 1992. "Binomial approximation in financial models: computational simplicity and convergence," Working Papers (Old Series) 9201, Federal Reserve Bank of Cleveland.
    8. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    9. Keppo, Jussi & Moscarini, Giuseppe & Smith, Lones, 2008. "The demand for information: More heat than light," Journal of Economic Theory, Elsevier, vol. 138(1), pages 21-50, January.
    10. Robert Elliott & Tak Siu, 2015. "Asset Pricing Using Trading Volumes in a Hidden Regime-Switching Environment," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(2), pages 133-149, May.
    11. Hardeep Singh Mundi, 2023. "Risk neutral variances to compute expected returns using data from S&P BSE 100 firms—a replication study," Management Review Quarterly, Springer, vol. 73(1), pages 215-230, February.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    14. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    15. repec:uts:finphd:40 is not listed on IDEAS
    16. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    17. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    18. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    19. Elyès Jouini & Clotilde Napp, 1998. "Contiuous Time Equilibrium Pricing of Nonredundant Assets," Working Papers 98-30, Center for Research in Economics and Statistics.
    20. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    21. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03239-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.