IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v289y2020i1d10.1007_s10479-019-03464-z.html
   My bibliography  Save this article

HNCcorr: combinatorial optimization for neuron identification

Author

Listed:
  • Roberto Asín Achá

    (Universidad de Concepción)

  • Dorit S. Hochbaum

    (University of California)

  • Quico Spaen

    (University of California)

Abstract

We present a combinatorial algorithm for cell detection in two-photon calcium imaging. Calcium imaging is a modern technique used by neuroscientists for recording movies of in-vivo neuronal activity at cellular resolution. The proposed algorithm, named HNCcorr, builds on the combinatorial clustering problem Hochbaum’s Normalized Cut (HNC). HNC is a model that trades off two goals: One goal is that the cluster has low similarity to the remaining objects. The second goal is that the cluster is highly similar to itself. The HNC model is closely related to the Normalized Cut problem of Shi and Malik, a well-known problem in image segmentation. However, whereas Normalized Cut is an NP-hard problem, HNC is solvable in polynomial time. The neuronal cell detection in calcium imaging movies is viewed here as a clustering problem. HNCcorr utilizes HNC to detect cells in these movies as coherent clusters of pixels that are highly distinct from the remaining pixels. HNCcorr guarantees, unlike existing methodologies for cell identification, a globally optimal solution to the underlying optimization problem. Of independent interest is a novel method, named similarity-squared, that is devised here for measuring similarity. In an experimental study on data from the Neurofinder cell identification benchmark, HNCcorr is a top performer. In particular, it achieves a higher average score than two frequently used matrix factorization algorithms. The Python and Matlab implementations of HNCcorr used here are publicly available. The use of HNCcorr demonstrates that combinatorial optimization is a valuable tool for neuroscience and other biomedical disciplines.

Suggested Citation

  • Roberto Asín Achá & Dorit S. Hochbaum & Quico Spaen, 2020. "HNCcorr: combinatorial optimization for neuron identification," Annals of Operations Research, Springer, vol. 289(1), pages 5-32, June.
  • Handle: RePEc:spr:annopr:v:289:y:2020:i:1:d:10.1007_s10479-019-03464-z
    DOI: 10.1007/s10479-019-03464-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03464-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03464-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorit S. Hochbaum, 2008. "The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem," Operations Research, INFORMS, vol. 56(4), pages 992-1009, August.
    2. Baumann, P. & Hochbaum, D.S. & Yang, Y.T., 2019. "A comparative study of the leading machine learning techniques and two new optimization algorithms," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1041-1057.
    3. Dorit Hochbaum & Barak Fishbain, 2011. "Nuclear threat detection with mobile distributed sensor networks," Annals of Operations Research, Springer, vol. 187(1), pages 45-63, July.
    4. Eitan Sharon & Meirav Galun & Dahlia Sharon & Ronen Basri & Achi Brandt, 2006. "Hierarchy and adaptivity in segmenting visual scenes," Nature, Nature, vol. 442(7104), pages 810-813, August.
    5. Young U. Ryu & R. Chandrasekaran & Varghese Jacob, 2004. "Prognosis Using an Isotonic Prediction Technique," Management Science, INFORMS, vol. 50(6), pages 777-785, June.
    6. Philipp Berens & Jeremy Freeman & Thomas Deneux & Nikolay Chenkov & Thomas McColgan & Artur Speiser & Jakob H Macke & Srinivas C Turaga & Patrick Mineault & Peter Rupprecht & Stephan Gerhard & Rainer , 2018. "Community-based benchmarking improves spike rate inference from two-photon calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-13, May.
    7. Hochbaum, Dorit S., 2002. "Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations," European Journal of Operational Research, Elsevier, vol. 140(2), pages 291-321, July.
    8. Dorit S. Hochbaum, 2013. "A Polynomial Time Algorithm for Rayleigh Ratio on Discrete Variables: Replacing Spectral Techniques for Expander Ratio, Normalized Cut, and Cheeger Constant," Operations Research, INFORMS, vol. 61(1), pages 184-198, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baumann, P. & Hochbaum, D.S. & Yang, Y.T., 2019. "A comparative study of the leading machine learning techniques and two new optimization algorithms," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1041-1057.
    2. Dorit S. Hochbaum, 2013. "A Polynomial Time Algorithm for Rayleigh Ratio on Discrete Variables: Replacing Spectral Techniques for Expander Ratio, Normalized Cut, and Cheeger Constant," Operations Research, INFORMS, vol. 61(1), pages 184-198, February.
    3. Ruriko Yoshida & Kenji Fukumizu & Chrysafis Vogiatzis, 2019. "Multilocus phylogenetic analysis with gene tree clustering," Annals of Operations Research, Springer, vol. 276(1), pages 293-313, May.
    4. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    5. Armin Fügenschuh & Marzena Fügenschuh, 2008. "Integer linear programming models for topology optimization in sheet metal design," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 313-331, October.
    6. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    7. Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
    8. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    9. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    11. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    12. Whittle, D. & Brazil, M. & Grossman, P.A. & Rubinstein, J.H. & Thomas, D.A., 2018. "Combined optimisation of an open-pit mine outline and the transition depth to underground mining," European Journal of Operational Research, Elsevier, vol. 268(2), pages 624-634.
    13. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating stochastic mine planning model with ARDL commodity price forecasting," Resources Policy, Elsevier, vol. 85(PB).
    14. Hassin, Refael & Or, Einat, 2010. "Min sum clustering with penalties," European Journal of Operational Research, Elsevier, vol. 206(3), pages 547-554, November.
    15. Yan, Xihong & Nie, Xiaofeng, 2016. "Optimal placement of multiple types of detectors under a small vessel attack threat to port security," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 71-94.
    16. Ling Tang & Shuai Wang & Kaijian He & Shouyang Wang, 2015. "A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting," Annals of Operations Research, Springer, vol. 234(1), pages 111-132, November.
    17. Armbruster, Benjamin & Smith, J. Cole & Park, Kihong, 2007. "A packet filter placement problem with application to defense against spoofed denial of service attacks," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1283-1292, January.
    18. Caraballo, Luis Evaristo & Díaz-Báñez, José-Miguel & Kroher, Nadine, 2021. "A polynomial algorithm for balanced clustering via graph partitioning," European Journal of Operational Research, Elsevier, vol. 289(2), pages 456-469.
    19. Al-Takrouri, Saleh & Savkin, Andrey V., 2013. "A decentralized flow redistribution algorithm for avoiding cascaded failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6135-6145.
    20. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:289:y:2020:i:1:d:10.1007_s10479-019-03464-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.