IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v248y2017i1d10.1007_s10479-016-2234-0.html
   My bibliography  Save this article

A multiple search operator heuristic for the max-k-cut problem

Author

Listed:
  • Fuda Ma

    (Université d’Angers)

  • Jin-Kao Hao

    (Université d’Angers
    Institut Universitaire de France)

Abstract

The max-k-cut problem is to partition the vertices of an edge-weighted graph $$G = (V,E)$$ G = ( V , E ) into $$k\ge 2$$ k ≥ 2 disjoint subsets such that the weight sum of the edges crossing the different subsets is maximized. The problem is referred as the max-cut problem when $$k=2$$ k = 2 . In this work, we present a multiple operator heuristic (MOH) for the general max-k-cut problem. MOH employs five distinct search operators organized into three search phases to effectively explore the search space. Experiments on two sets of 91 well-known benchmark instances show that the proposed algorithm is highly effective on the max-k-cut problem and improves the current best known results (lower bounds) of most of the tested instances for $$k\in [3,5]$$ k ∈ [ 3 , 5 ] . For the popular special case $$k=2$$ k = 2 (i.e., the max-cut problem), MOH also performs remarkably well by discovering 4 improved best known results. We provide additional studies to shed light on the key ingredients of the algorithm.

Suggested Citation

  • Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
  • Handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2234-0
    DOI: 10.1007/s10479-016-2234-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2234-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2234-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John E. Mitchell, 2003. "Realignment in the National Football League: Did they do it right?," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 683-701, October.
    2. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    3. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.
    4. Rafael Martí & Abraham Duarte & Manuel Laguna, 2009. "Advanced Scatter Search for the Max-Cut Problem," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 26-38, February.
    5. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    6. Geng Lin & Wenxing Zhu, 2012. "A discrete dynamic convexized method for the max-cut problem," Annals of Operations Research, Springer, vol. 196(1), pages 371-390, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weber, Shlomo & Castaneda Dower, Paul & Gokmen, Gunes & Le Breton, Michel, 2021. "Did the Cold War Produce Development Clusters in Africa?," CEPR Discussion Papers 15810, C.E.P.R. Discussion Papers.
    2. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2019. "Improving the linear relaxation of maximum k-cut with semidefinite-based constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 123-151, June.
    3. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2018. "Computational study of valid inequalities for the maximum k-cut problem," Annals of Operations Research, Springer, vol. 265(1), pages 5-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2018. "Computational study of valid inequalities for the maximum k-cut problem," Annals of Operations Research, Springer, vol. 265(1), pages 5-27, June.
    2. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2019. "Improving the linear relaxation of maximum k-cut with semidefinite-based constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 123-151, June.
    3. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    4. Iain Dunning & Swati Gupta & John Silberholz, 2018. "What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 608-624, August.
    5. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.
    6. Geng Lin & Wenxing Zhu & M. Montaz Ali, 2016. "An effective discrete dynamic convexized method for solving the winner determination problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 563-593, August.
    7. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    8. Diego Recalde & Ramiro Torres & Polo Vaca, 2020. "An exact approach for the multi-constraint graph partitioning problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 289-308, October.
    9. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    10. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    11. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Jamie Fairbrother & Adam N. Letchford & Keith Briggs, 2018. "A two-level graph partitioning problem arising in mobile wireless communications," Computational Optimization and Applications, Springer, vol. 69(3), pages 653-676, April.
    13. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    14. Shenshen Gu & Yue Yang, 2020. "A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    15. Wang, Yang & Lü, Zhipeng & Glover, Fred & Hao, Jin-Kao, 2012. "Path relinking for unconstrained binary quadratic programming," European Journal of Operational Research, Elsevier, vol. 223(3), pages 595-604.
    16. repec:dgr:rugsom:99a17 is not listed on IDEAS
    17. Giovanni Giallombardo & Houyuan Jiang & Giovanna Miglionico, 2016. "New Formulations for the Conflict Resolution Problem in the Scheduling of Television Commercials," Operations Research, INFORMS, vol. 64(4), pages 838-848, August.
    18. Lu, Yongliang & Benlic, Una & Wu, Qinghua, 2018. "A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints," European Journal of Operational Research, Elsevier, vol. 268(1), pages 54-69.
    19. Angelika Wiegele & Shudian Zhao, 2022. "SDP-based bounds for graph partition via extended ADMM," Computational Optimization and Applications, Springer, vol. 82(1), pages 251-291, May.
    20. Fred Glover & Jin-Kao Hao, 2016. "f-Flip strategies for unconstrained binary quadratic programming," Annals of Operations Research, Springer, vol. 238(1), pages 651-657, March.
    21. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2234-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.