IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1409-d1642474.html
   My bibliography  Save this article

Population-Based Redundancy Control in Genetic Algorithms: Enhancing Max-Cut Optimization

Author

Listed:
  • Yong-Hyuk Kim

    (School of Software, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea)

  • Zong Woo Geem

    (Department of Smart City, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea)

  • Yourim Yoon

    (Department of Computer Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea)

Abstract

The max-cut problem is a well-known topic in combinatorial optimization, with a wide range of practical applications. Given its NP-hard nature, heuristic approaches—such as genetic algorithms, tabu search, and harmony search—have been extensively employed. Recent research has demonstrated that harmony search can outperform genetic algorithms by effectively avoiding redundant searches, a strategy similar to tabu search. In this study, we propose a modified genetic algorithm that integrates tabu search to enhance solution quality. By preventing repeated exploration of previously visited solutions, the proposed method significantly improves the efficiency of traditional genetic algorithms and achieves performance levels comparable to harmony search. The experimental results confirm that the proposed algorithm outperforms standard genetic algorithms on the max-cut problem. This work demonstrates the effectiveness of combining tabu search with genetic algorithms and offers valuable insights into the enhancement of heuristic optimization techniques. The novelty of our approach lies in integrating solution-level tabu constraints directly into the genetic algorithm’s population dynamics, enabling redundancy prevention without additional memory overhead, a strategy not previously explored in the proposed hybrids.

Suggested Citation

  • Yong-Hyuk Kim & Zong Woo Geem & Yourim Yoon, 2025. "Population-Based Redundancy Control in Genetic Algorithms: Enhancing Max-Cut Optimization," Mathematics, MDPI, vol. 13(9), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1409-:d:1642474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Hyuk Kim & Fabio Caraffini, 2023. "Preface to “Swarm and Evolutionary Computation—Bridging Theory and Practice”," Mathematics, MDPI, vol. 11(5), pages 1-3, March.
    2. Rafael Martí & Abraham Duarte & Manuel Laguna, 2009. "Advanced Scatter Search for the Max-Cut Problem," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 26-38, February.
    3. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
    2. Iain Dunning & Swati Gupta & John Silberholz, 2018. "What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 608-624, August.
    3. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.
    4. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    5. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    6. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    8. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    9. Shenshen Gu & Yue Yang, 2020. "A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    10. Wang, Yang & Lü, Zhipeng & Glover, Fred & Hao, Jin-Kao, 2012. "Path relinking for unconstrained binary quadratic programming," European Journal of Operational Research, Elsevier, vol. 223(3), pages 595-604.
    11. repec:dgr:rugsom:99a17 is not listed on IDEAS
    12. Lu, Yongliang & Benlic, Una & Wu, Qinghua, 2018. "A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints," European Journal of Operational Research, Elsevier, vol. 268(1), pages 54-69.
    13. Fred Glover & Jin-Kao Hao, 2016. "f-Flip strategies for unconstrained binary quadratic programming," Annals of Operations Research, Springer, vol. 238(1), pages 651-657, March.
    14. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    15. Goldengorin, Boris & Sierksma, Gerard & Tijssen, Gert A., 1998. "The data-correcting algorithm for supermodular functions, with applications to quadratic cost partition and simple plant location problems," Research Report 98A08, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Pierre Fouilhoux & A. Mahjoub, 2012. "Solving VLSI design and DNA sequencing problems using bipartization of graphs," Computational Optimization and Applications, Springer, vol. 51(2), pages 749-781, March.
    17. Goldengorin, Boris & Ghosh, Diptesh, 2004. "A Multilevel Search Algorithm for the Maximization of Submodular Functions," Research Report 04A20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    18. Hongwei Liu & Sanyang Liu & Fengmin Xu, 2003. "A Tight Semidefinite Relaxation of the MAX CUT Problem," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 237-245, September.
    19. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    20. Qinghua Wu & Yang Wang & Fred Glover, 2020. "Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 74-89, January.
    21. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2018. "Computational study of valid inequalities for the maximum k-cut problem," Annals of Operations Research, Springer, vol. 265(1), pages 5-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1409-:d:1642474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.