IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1409-d1642474.html
   My bibliography  Save this article

Population-Based Redundancy Control in Genetic Algorithms: Enhancing Max-Cut Optimization

Author

Listed:
  • Yong-Hyuk Kim

    (School of Software, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea)

  • Zong Woo Geem

    (Department of Smart City, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea)

  • Yourim Yoon

    (Department of Computer Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea)

Abstract

The max-cut problem is a well-known topic in combinatorial optimization, with a wide range of practical applications. Given its NP-hard nature, heuristic approaches—such as genetic algorithms, tabu search, and harmony search—have been extensively employed. Recent research has demonstrated that harmony search can outperform genetic algorithms by effectively avoiding redundant searches, a strategy similar to tabu search. In this study, we propose a modified genetic algorithm that integrates tabu search to enhance solution quality. By preventing repeated exploration of previously visited solutions, the proposed method significantly improves the efficiency of traditional genetic algorithms and achieves performance levels comparable to harmony search. The experimental results confirm that the proposed algorithm outperforms standard genetic algorithms on the max-cut problem. This work demonstrates the effectiveness of combining tabu search with genetic algorithms and offers valuable insights into the enhancement of heuristic optimization techniques. The novelty of our approach lies in integrating solution-level tabu constraints directly into the genetic algorithm’s population dynamics, enabling redundancy prevention without additional memory overhead, a strategy not previously explored in the proposed hybrids.

Suggested Citation

  • Yong-Hyuk Kim & Zong Woo Geem & Yourim Yoon, 2025. "Population-Based Redundancy Control in Genetic Algorithms: Enhancing Max-Cut Optimization," Mathematics, MDPI, vol. 13(9), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1409-:d:1642474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Hyuk Kim & Fabio Caraffini, 2023. "Preface to “Swarm and Evolutionary Computation—Bridging Theory and Practice”," Mathematics, MDPI, vol. 11(5), pages 1-3, March.
    2. Rafael Martí & Abraham Duarte & Manuel Laguna, 2009. "Advanced Scatter Search for the Max-Cut Problem," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 26-38, February.
    3. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.
    2. Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
    3. Iain Dunning & Swati Gupta & John Silberholz, 2018. "What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 608-624, August.
    4. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    5. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    6. Shenshen Gu & Yue Yang, 2020. "A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    7. repec:dgr:rugsom:99a17 is not listed on IDEAS
    8. Lu, Yongliang & Benlic, Una & Wu, Qinghua, 2018. "A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints," European Journal of Operational Research, Elsevier, vol. 268(1), pages 54-69.
    9. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    10. Pierre Fouilhoux & A. Mahjoub, 2012. "Solving VLSI design and DNA sequencing problems using bipartization of graphs," Computational Optimization and Applications, Springer, vol. 51(2), pages 749-781, March.
    11. Goldengorin, Boris & Ghosh, Diptesh, 2004. "A Multilevel Search Algorithm for the Maximization of Submodular Functions," Research Report 04A20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    12. Hongwei Liu & Sanyang Liu & Fengmin Xu, 2003. "A Tight Semidefinite Relaxation of the MAX CUT Problem," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 237-245, September.
    13. Goldengorin, Boris & Tijssen, Gert A. & Tso, Michael, 1999. "The maximization of submodular functions : old and new proofs for the correctness of the dichotomy algorithm," Research Report 99A17, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. repec:dgr:rugsom:98a08 is not listed on IDEAS
    15. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    16. A. D. López-Sánchez & J. Sánchez-Oro & M. Laguna, 2021. "A New Scatter Search Design for Multiobjective Combinatorial Optimization with an Application to Facility Location," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 629-642, May.
    17. Jian Sun & Zan-Bo Zhang & Yannan Chen & Deren Han & Donglei Du & Xiaoyan Zhang, 2023. "A maximum hypergraph 3-cut problem with limited unbalance: approximation and analysis," Journal of Global Optimization, Springer, vol. 87(2), pages 917-937, November.
    18. Ling, Ai-Fan & Xu, Cheng-Xian & Xu, Feng-Min, 2009. "A discrete filled function algorithm embedded with continuous approximation for solving max-cut problems," European Journal of Operational Research, Elsevier, vol. 197(2), pages 519-531, September.
    19. Chuangchuang Sun, 2023. "A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming," Mathematics, MDPI, vol. 11(21), pages 1-27, October.
    20. F. Liers & G. Pardella, 2012. "Partitioning planar graphs: a fast combinatorial approach for max-cut," Computational Optimization and Applications, Springer, vol. 51(1), pages 323-344, January.
    21. Chao Yun & Zhongyu Liang & Aleš Hrabec & Zhentao Liu & Mantao Huang & Leran Wang & Yifei Xiao & Yikun Fang & Wei Li & Wenyun Yang & Yanglong Hou & Jinbo Yang & Laura J. Heyderman & Pietro Gambardella , 2023. "Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    22. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2019. "Improving the linear relaxation of maximum k-cut with semidefinite-based constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 123-151, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1409-:d:1642474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.