IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41830-5.html
   My bibliography  Save this article

Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating

Author

Listed:
  • Chao Yun

    (Peking University
    Peking University)

  • Zhongyu Liang

    (Peking University)

  • Aleš Hrabec

    (ETH Zurich
    Paul Scherrer Institute
    ETH Zurich)

  • Zhentao Liu

    (ETH Zurich
    Paul Scherrer Institute)

  • Mantao Huang

    (Massachusetts Institute of Technology)

  • Leran Wang

    (Peking University)

  • Yifei Xiao

    (Central Iron and Steel Research Institute Group)

  • Yikun Fang

    (Central Iron and Steel Research Institute Group)

  • Wei Li

    (Central Iron and Steel Research Institute Group)

  • Wenyun Yang

    (Peking University)

  • Yanglong Hou

    (Peking University)

  • Jinbo Yang

    (Peking University)

  • Laura J. Heyderman

    (ETH Zurich
    Paul Scherrer Institute)

  • Pietro Gambardella

    (ETH Zurich)

  • Zhaochu Luo

    (Peking University)

Abstract

Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behavior and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanomagnets in which the coupling between adjacent nanomagnetic regions can be reversibly converted between parallel and antiparallel through solid-state ionic gating. This is achieved with the voltage-control of the magnetic anisotropy in a nanosized region where the symmetric exchange interaction favors parallel alignment and the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction, favors antiparallel alignment of the nanomagnet magnetizations. Applying this concept to a two-dimensional lattice, we demonstrate a voltage-controlled phase transition in artificial spin ices. Furthermore, we achieve an addressable control of the individual couplings and realize an electrically programmable Ising network, which opens up new avenues to design nanomagnet-based logic devices and neuromorphic computers.

Suggested Citation

  • Chao Yun & Zhongyu Liang & Aleš Hrabec & Zhentao Liu & Mantao Huang & Leran Wang & Yifei Xiao & Yikun Fang & Wei Li & Wenyun Yang & Yanglong Hou & Jinbo Yang & Laura J. Heyderman & Pietro Gambardella , 2023. "Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41830-5
    DOI: 10.1038/s41467-023-41830-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41830-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41830-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. T. Heron & J. L. Bosse & Q. He & Y. Gao & M. Trassin & L. Ye & J. D. Clarkson & C. Wang & Jian Liu & S. Salahuddin & D. C. Ralph & D. G. Schlom & J. Íñiguez & B. D. Huey & R. Ramesh, 2014. "Deterministic switching of ferromagnetism at room temperature using an electric field," Nature, Nature, vol. 516(7531), pages 370-373, December.
    2. Yann Perrin & Benjamin Canals & Nicolas Rougemaille, 2016. "Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice," Nature, Nature, vol. 540(7633), pages 410-413, December.
    3. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Flavio Abreu Araujo & Vincent Cros & Paolo Bortolotti & Juan Trastoy & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Maxence E, 2018. "Vowel recognition with four coupled spin-torque nano-oscillators," Nature, Nature, vol. 563(7730), pages 230-234, November.
    4. Ioan Mihai Miron & Kevin Garello & Gilles Gaudin & Pierre-Jean Zermatten & Marius V. Costache & Stéphane Auffret & Sébastien Bandiera & Bernard Rodmacq & Alain Schuhl & Pietro Gambardella, 2011. "Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection," Nature, Nature, vol. 476(7359), pages 189-193, August.
    5. William A. Borders & Ahmed Z. Pervaiz & Shunsuke Fukami & Kerem Y. Camsari & Hideo Ohno & Supriyo Datta, 2019. "Integer factorization using stochastic magnetic tunnel junctions," Nature, Nature, vol. 573(7774), pages 390-393, September.
    6. Seungchul Jung & Hyungwoo Lee & Sungmeen Myung & Hyunsoo Kim & Seung Keun Yoon & Soon-Wan Kwon & Yongmin Ju & Minje Kim & Wooseok Yi & Shinhee Han & Baeseong Kwon & Boyoung Seo & Kilho Lee & Gwan-Hyeo, 2022. "A crossbar array of magnetoresistive memory devices for in-memory computing," Nature, Nature, vol. 601(7892), pages 211-216, January.
    7. Zhaochu Luo & Aleš Hrabec & Trong Phuong Dao & Giacomo Sala & Simone Finizio & Junxiao Feng & Sina Mayr & Jörg Raabe & Pietro Gambardella & Laura J. Heyderman, 2020. "Current-driven magnetic domain-wall logic," Nature, Nature, vol. 579(7798), pages 214-218, March.
    8. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yudi Dai & Junlin Xiong & Yanfeng Ge & Bin Cheng & Lizheng Wang & Pengfei Wang & Zenglin Liu & Shengnan Yan & Cuiwei Zhang & Xianghan Xu & Youguo Shi & Sang-Wook Cheong & Cong Xiao & Shengyuan A. Yang, 2024. "Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Qu Yang & Donghyeon Han & Shishun Zhao & Jaimin Kang & Fei Wang & Sung-Chul Lee & Jiayu Lei & Kyung-Jin Lee & Byong-Guk Park & Hyunsoo Yang, 2024. "Field-free spin–orbit torque switching in ferromagnetic trilayers at sub-ns timescales," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    4. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Min-Gu Kang & Jong-Guk Choi & Jimin Jeong & Jae Yeol Park & Hyeon-Jong Park & Taehwan Kim & Taekhyeon Lee & Kab-Jin Kim & Kyoung-Whan Kim & Jung Hyun Oh & Duc Duong Viet & Jong-Ryul Jeong & Jong Min Y, 2021. "Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Kang Wang & Yiou Zhang & Vineetha Bheemarasetty & Shiyu Zhou & See-Chen Ying & Gang Xiao, 2022. "Single skyrmion true random number generator using local dynamics and interaction between skyrmions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
    8. Robert Puttock & Ingrid M. Andersen & Christophe Gatel & Bumsu Park & Mark C. Rosamond & Etienne Snoeck & Olga Kazakova, 2022. "Defect-induced monopole injection and manipulation in artificial spin ice," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    10. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    11. Haiyu Wang & Hao Wu & Jie Zhang & Yingjie Liu & Dongdong Chen & Chandan Pandey & Jialiang Yin & Dahai Wei & Na Lei & Shuyuan Shi & Haichang Lu & Peng Li & Albert Fert & Kang L. Wang & Tianxiao Nie & W, 2023. "Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yuhan Liang & Di Yi & Tianxiang Nan & Shengsheng Liu & Le Zhao & Yujun Zhang & Hetian Chen & Teng Xu & Minyi Dai & Jia-Mian Hu & Ben Xu & Ji Shi & Wanjun Jiang & Rong Yu & Yuan-Hua Lin, 2023. "Field-free spin-orbit switching of perpendicular magnetization enabled by dislocation-induced in-plane symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    16. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    17. Shenshen Gu & Yue Yang, 2020. "A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    18. Piyush Agarwal & Lisen Huang & Sze Lim & Ranjan Singh, 2022. "Electric-field control of nonlinear THz spintronic emitters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Martina Ahlberg & Sunjae Chung & Sheng Jiang & Andreas Frisk & Maha Khademi & Roman Khymyn & Ahmad A. Awad & Q. Tuan Le & Hamid Mazraati & Majid Mohseni & Markus Weigand & Iuliia Bykova & Felix Groß &, 2022. "Freezing and thawing magnetic droplet solitons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Michael Saccone & Francesco Caravelli & Kevin Hofhuis & Scott Dhuey & Andreas Scholl & Cristiano Nisoli & Alan Farhan, 2023. "Real-space observation of ergodicity transitions in artificial spin ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41830-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.