IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v219y2014i1p285-29710.1007-s10479-013-1361-0.html
   My bibliography  Save this article

A decision support system to manage the supply chain of sugar cane

Author

Listed:
  • Esteban López-Milán
  • Lluis Plà-Aragonés

Abstract

In this work the authors present a Decision Support System (DSS) for planning daily operations in the sugar cane supply chain. The supply chain model is based on a mixed integer linear programming model. The model objective is to minimize transportation costs while assuring cane supply to the sugar mill. The model determines the fields to harvest, the cutting-loading-transport means for such operation, and the roster for each employee. The DSS has been tested under Cuban conditions but easily can be adapted to different situations updating the parameters of the model. Reported savings represent an 8 % of the fuel cost. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Esteban López-Milán & Lluis Plà-Aragonés, 2014. "A decision support system to manage the supply chain of sugar cane," Annals of Operations Research, Springer, vol. 219(1), pages 285-297, August.
  • Handle: RePEc:spr:annopr:v:219:y:2014:i:1:p:285-297:10.1007/s10479-013-1361-0
    DOI: 10.1007/s10479-013-1361-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1361-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1361-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Higgins, Andrew & Thorburn, Peter & Archer, Ainsley & Jakku, Emma, 2007. "Opportunities for value chain research in sugar industries," Agricultural Systems, Elsevier, vol. 94(3), pages 611-621, June.
    2. A J Higgins & L A Laredo, 2006. "Improving harvesting and transport planning within a sugar value chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 367-376, April.
    3. Rizzoli, Andrea E. & Fornara, Nicoletta & Gambardella, Luca Maria, 2002. "A simulation tool for combined rail/road transport in intermodal terminals," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 57-71.
    4. Fae Martin & Arthur Pinkney & Xinghuo Yu, 2001. "Cane Railway Scheduling via Constraint Logic Programming: Labelling Order and Constraints in a Real-Life Application," Annals of Operations Research, Springer, vol. 108(1), pages 193-209, November.
    5. Higgins, Andrew J. & Muchow, Russell C., 2003. "Assessing the potential benefits of alternative cane supply arrangements in the Australian sugar industry," Agricultural Systems, Elsevier, vol. 76(2), pages 623-638, May.
    6. Semenzato, R., 1995. "A simulation study of sugar cane harvesting," Agricultural Systems, Elsevier, vol. 47(4), pages 427-437.
    7. Andrew J. Higgins, 2002. "Australian Sugar Mills Optimize Harvester Rosters to Improve Production," Interfaces, INFORMS, vol. 32(3), pages 15-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junqueira, Rogerio de Ávila Ribeiro & Morabito, Reinaldo, 2019. "Modeling and solving a sugarcane harvest front scheduling problem," International Journal of Production Economics, Elsevier, vol. 213(C), pages 150-160.
    2. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    3. Jena, Sanjay Dominik & Poggi, Marcus, 2013. "Harvest planning in the Brazilian sugar cane industry via mixed integer programming," European Journal of Operational Research, Elsevier, vol. 230(2), pages 374-384.
    4. Piewthongngam, Kullapapruk & Pathumnakul, Supachai & Setthanan, Kanchana, 2009. "Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry," Agricultural Systems, Elsevier, vol. 102(1-3), pages 58-66, October.
    5. A J Higgins & L A Laredo, 2006. "Improving harvesting and transport planning within a sugar value chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 367-376, April.
    6. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    7. Bocca, Felipe Ferreira & Rodrigues, Luiz Henrique Antunes & Arraes, Nilson Antonio Modesto, 2015. "When do I want to know and why? Different demands on sugarcane yield predictions," Agricultural Systems, Elsevier, vol. 135(C), pages 48-56.
    8. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    9. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    10. Bart Wiegmans & Behzad Behdani, 2018. "A review and analysis of the investment in, and cost structure of, intermodal rail terminals," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 33-51, January.
    11. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.
    12. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    13. Helenice de O. Florentino & Dylan F. Jones & Chandra Ade Irawan & Djamila Ouelhadj & Banafesh Khosravi & Daniela R. Cantane, 2022. "An optimization model for combined selecting, planting and harvesting sugarcane varieties," Annals of Operations Research, Springer, vol. 314(2), pages 451-469, July.
    14. Zhang, Rong & Jian, Wenliang & Tavasszy, Lóránt, 2018. "Estimation of network level benefits of reliability improvements in intermodal freight transport," Research in Transportation Economics, Elsevier, vol. 70(C), pages 1-8.
    15. Sadovska, V., 2018. "Sustainable value creation in the agricultural sector. A literature review," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276984, International Association of Agricultural Economists.
    16. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    17. Sara Rodríguez & Lluis Plà & Javier Faulin, 2014. "New opportunities in operations research to improve pork supply chain efficiency," Annals of Operations Research, Springer, vol. 219(1), pages 5-23, August.
    18. Ferrer, Juan-Carlos & Mac Cawley, Alejandro & Maturana, Sergio & Toloza, Sergio & Vera, Jorge, 2008. "An optimization approach for scheduling wine grape harvest operations," International Journal of Production Economics, Elsevier, vol. 112(2), pages 985-999, April.
    19. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    20. Roanes-Lozano, Eugenio & Laita, Luis M. & Roanes-Macías, Eugenio & Wester, Michael J. & Ruiz-Lozano, José Luis & Roncero, Carlos, 2009. "Evolution of railway network flexibility: The Spanish broad gauge case," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2317-2332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:219:y:2014:i:1:p:285-297:10.1007/s10479-013-1361-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.