IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v203y2013i1p101-11810.1007-s10479-013-1317-4.html
   My bibliography  Save this article

Mathematical programming approaches for dual multicast routing problem with multilayer risk cost

Author

Listed:
  • Zhe Liang
  • Chungmok Lee
  • W. Chaovalitwongse

Abstract

This paper addresses a dual multicast routing problem with shared risk link group (SRLG) diverse costs (DMR-SRLGD) that arises from large-scale distribution of realtime multicast data (e.g., internet protocol TV, videocasting, online games, stock price update). The goal of this problem is to find two redundant multicast trees, each from one of the two sources to every destination at a minimum cost. The cost of the problem contains two parts: the multicast routing cost and the shard common risk cost. Such common risk could cause the failures of multiple links simultaneously. Therefore, the DMR-SRLGD ensures the availability and reliability of multicast service. We formulate an edge-based model for the DMR-SRLGD. In addition, we also propose a path-based model that rises from the Dantzig-Wolfe decomposition of the edge-based model, and develop a column-generation framework to solve the linear relaxation of the path-based formulation. We then employ a branch-and-price solution method to find integer solutions to DMR-SRLGD. We also extend both edge-based and path-based models to handle the complex quality of service requirements. The computational results show the edge-based model is superior than the path-based model for the easy and small test instances, whereas the path-based model provides better solutions in a timely fashion for hard or large test instances. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Zhe Liang & Chungmok Lee & W. Chaovalitwongse, 2013. "Mathematical programming approaches for dual multicast routing problem with multilayer risk cost," Annals of Operations Research, Springer, vol. 203(1), pages 101-118, March.
  • Handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:101-118:10.1007/s10479-013-1317-4
    DOI: 10.1007/s10479-013-1317-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1317-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1317-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhe Liang & Wanpracha Art Chaovalitwongse, 2010. "Bounds of redundant multicast routing problem with SRLG-diverse constraints: edge, path and tree models," Journal of Global Optimization, Springer, vol. 48(2), pages 335-345, October.
    2. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    3. François Vanderbeck, 2005. "Implementing Mixed Integer Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 331-358, Springer.
    4. Carlos A.S. Oliveira & Panos M. Pardalos & Tania M. Querido, 2005. "A combinatorial algorithm for message scheduling on controller area networks," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 1(1/2), pages 160-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Wu & Zhe Liang & Canrong Zhang, 2018. "Analytics Branching and Selection for the Capacitated Multi-Item Lot Sizing Problem with Nonidentical Machines," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 236-258, May.
    2. Timo Gschwind & Stefan Irnich, 2014. "Stabilized Column Generation for the Temporal Knapsack Problem using Dual- Optimal Inequalities," Working Papers 1413, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 13 Nov 2014.
    3. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    4. Zhe Liang & Wanpracha Art Chaovalitwongse & Elsayed A. Elsayed, 2014. "Sequence Assignment Model for the Flight Conflict Resolution Problem," Transportation Science, INFORMS, vol. 48(3), pages 334-350, August.
    5. Jiyoung Choi & Chungmok Lee & Sungsoo Park, 2018. "Dantzig–Wolfe decomposition approach to the vehicle assignment problem with demand uncertainty in a hybrid hub-and-spoke network," Annals of Operations Research, Springer, vol. 264(1), pages 57-87, May.
    6. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    7. Timo Gschwind & Stefan Irnich, 2017. "Stabilized column generation for the temporal knapsack problem using dual-optimal inequalities," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 541-556, March.
    8. Wu, Lingxiao & Wang, Shuaian & Laporte, Gilbert, 2021. "The Robust Bulk Ship Routing Problem with Batched Cargo Selection," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 124-159.
    9. Ioannis Fragkos & Zeger Degraeve & Bert De Reyck, 2016. "A Horizon Decomposition Approach for the Capacitated Lot-Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 465-482, August.
    10. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    11. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2019. "Integral column generation for the set partitioning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 713-744, December.
    12. Ibrahim Muter & Jean-François Cordeau & Gilbert Laporte, 2014. "A Branch-and-Price Algorithm for the Multidepot Vehicle Routing Problem with Interdepot Routes," Transportation Science, INFORMS, vol. 48(3), pages 425-441, August.
    13. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    14. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    15. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2020. "A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition," Energy, Elsevier, vol. 197(C).
    16. Sebastian Kraul & Markus Seizinger & Jens O. Brunner, 2023. "Machine Learning–Supported Prediction of Dual Variables for the Cutting Stock Problem with an Application in Stabilized Column Generation," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 692-709, May.
    17. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    18. Bouarab, Hocine & El Hallaoui, Issmail & Metrane, Abdelmoutalib & Soumis, François, 2017. "Dynamic constraint and variable aggregation in column generation," European Journal of Operational Research, Elsevier, vol. 262(3), pages 835-850.
    19. Filippo Zanetti & Jacek Gondzio, 2023. "An Interior Point–Inspired Algorithm for Linear Programs Arising in Discrete Optimal Transport," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1061-1078, September.
    20. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:101-118:10.1007/s10479-013-1317-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.