IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v184y2011i1p3-2610.1007-s10479-010-0730-1.html
   My bibliography  Save this article

Rapidly computing robust minimum capacity s-t cuts: a case study in solving a sequence of maximum flow problems

Author

Listed:
  • Douglas Altner
  • Özlem Ergun

Abstract

The Minimum Capacity s-t Cut Problem (MinCut) is an intensively studied problem in combinatorial optimization. A natural extension is the problem of choosing a minimum capacity s-t cut when arc capacities are unknown but confined to known intervals. This motivates the Robust Minimum Capacity s-t Cut Problem (RobuCut), which has applications such as open-pit mining and project scheduling. In this paper, we show how RobuCut can be reduced to solving a sequence of maximum flow problems and provide an efficient algorithm for rapidly solving this sequence of problems. We demonstrate that our algorithm solves instances of RobuCut in seconds that would require hours if a standard maximum flow solver is iteratively used as a black-box subroutine. Copyright US Government 2011

Suggested Citation

  • Douglas Altner & Özlem Ergun, 2011. "Rapidly computing robust minimum capacity s-t cuts: a case study in solving a sequence of maximum flow problems," Annals of Operations Research, Springer, vol. 184(1), pages 3-26, April.
  • Handle: RePEc:spr:annopr:v:184:y:2011:i:1:p:3-26:10.1007/s10479-010-0730-1
    DOI: 10.1007/s10479-010-0730-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0730-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0730-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dawn M. Strickland & Earl Barnes & Joel S. Sokol, 2005. "Optimal Protein Structure Alignment Using Maximum Cliques," Operations Research, INFORMS, vol. 53(3), pages 389-402, June.
    2. Johannes O. Royset & R. Kevin Wood, 2007. "Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 175-184, May.
    3. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    4. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    5. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & Ebrahim Nasrabadi & Sebastian Stiller, 2013. "Robust and Adaptive Network Flows," Operations Research, INFORMS, vol. 61(5), pages 1218-1242, October.
    2. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    3. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    4. Lebing Wang & Jian Gang Jin & Gleb Sibul & Yi Wei, 2023. "Designing Metro Network Expansion: Deterministic and Robust Optimization Models," Networks and Spatial Economics, Springer, vol. 23(1), pages 317-347, March.
    5. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2016. "The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty," Management Science, INFORMS, vol. 62(4), pages 1188-1201, April.
    6. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    7. Byung Chung & Tao Yao & Chi Xie & Andreas Thorsen, 2011. "Robust Optimization Model for a Dynamic Network Design Problem Under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 11(2), pages 371-389, June.
    8. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    9. Hezhi Luo & Xiaodong Ding & Jiming Peng & Rujun Jiang & Duan Li, 2021. "Complexity Results and Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 180-197, January.
    10. Neyshabouri, Saba & Berg, Bjorn P., 2017. "Two-stage robust optimization approach to elective surgery and downstream capacity planning," European Journal of Operational Research, Elsevier, vol. 260(1), pages 21-40.
    11. Xin Chen & Yuhan Zhang, 2009. "Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts," Operations Research, INFORMS, vol. 57(6), pages 1469-1482, December.
    12. Hassan Hijazi & Pierre Bonami & Adam Ouorou, 2013. "Robust delay-constrained routing in telecommunications," Annals of Operations Research, Springer, vol. 206(1), pages 163-181, July.
    13. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    14. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    15. Xin Chen & Melvyn Sim & Peng Sun & Jiawei Zhang, 2008. "A Linear Decision-Based Approximation Approach to Stochastic Programming," Operations Research, INFORMS, vol. 56(2), pages 344-357, April.
    16. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    17. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    18. Jia Shu & Miao Song, 2014. "Dynamic Container Deployment: Two-Stage Robust Model, Complexity, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 135-149, February.
    19. Ayşegül Altın & Hande Yaman & Mustafa Ç. Pınar, 2011. "The Robust Network Loading Problem Under Hose Demand Uncertainty: Formulation, Polyhedral Analysis, and Computations," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 75-89, February.
    20. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:184:y:2011:i:1:p:3-26:10.1007/s10479-010-0730-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.