IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v150y2007i1p137-15710.1007-s10479-006-0161-1.html
   My bibliography  Save this article

Shiftable intervals

Author

Listed:
  • Federico Malucelli
  • Sara Nicoloso

Abstract

Consider a set of n fixed length intervals and a set of n (larger) windows, in one-to-one correspondence with the intervals, and assume that each interval can be placed in any position within its window. If the position of each interval has been fixed, the intersection graph of such set of intervals is an interval graph. By varying the position of each interval in all possible ways, we get a family of interval graphs. In the paper we define some optimization problems related to the clique, stability, chromatic, clique cover numbers and cardinality of the minimum dominating set of the interval graphs in the family, mainly focussing on complexity aspects, bounds and solution algorithms. Some problems are proved to be NP-hard, others are solved in polynomial time on some particular classes of instances. Many practical applications can be reduced to these kind of problems, suggesting the use of Shiftable Intervals as a new interesting modeling framework. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Federico Malucelli & Sara Nicoloso, 2007. "Shiftable intervals," Annals of Operations Research, Springer, vol. 150(1), pages 137-157, March.
  • Handle: RePEc:spr:annopr:v:150:y:2007:i:1:p:137-157:10.1007/s10479-006-0161-1
    DOI: 10.1007/s10479-006-0161-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0161-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0161-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroshi Kise & Toshihide Ibaraki & Hisashi Mine, 1978. "A Solvable Case of the One-Machine Scheduling Problem with Ready and Due Times," Operations Research, INFORMS, vol. 26(1), pages 121-126, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. René Bevern & Rolf Niedermeier & Ondřej Suchý, 2017. "A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: few machines, small looseness, and small slack," Journal of Scheduling, Springer, vol. 20(3), pages 255-265, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Jatinder N. D. & Ho, Johnny C., 1996. "Scheduling with two job classes and setup times to minimize the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 42(3), pages 205-216, April.
    2. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.
    3. Sevaux, Marc & Dauzere-Peres, Stephane, 2003. "Genetic algorithms to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 151(2), pages 296-306, December.
    4. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    5. Gio Kao & Edward Sewell & Sheldon Jacobson & Shane Hall, 2012. "New dominance rules and exploration strategies for the 1|r i |∑U i scheduling problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1253-1274, April.
    6. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.
    7. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    8. Zhenming Chen & Vikas Singh & Jinhui Xu, 2005. "Efficient Job Scheduling Algorithms with Multi-Type Contentions," Journal of Combinatorial Optimization, Springer, vol. 10(2), pages 179-197, September.
    9. Leung, Joseph Y.-T. & Li, Haibing & Pinedo, Michael, 2006. "Scheduling orders for multiple product types with due date related objectives," European Journal of Operational Research, Elsevier, vol. 168(2), pages 370-389, January.
    10. Dauzere-Peres, Stephane, 1995. "Minimizing late jobs in the general one machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 81(1), pages 134-142, February.
    11. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
    12. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
    13. Peridy, Laurent & Pinson, Eric & Rivreau, David, 2003. "Using short-term memory to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 148(3), pages 591-603, August.
    14. Xiaoqiang Cai & Sean Zhou, 1999. "Stochastic Scheduling on Parallel Machines Subject to Random Breakdowns to Minimize Expected Costs for Earliness and Tardy Jobs," Operations Research, INFORMS, vol. 47(3), pages 422-437, June.
    15. I. Adiri & E. Frostig & A. H. G. Rinnooy Kan, 1991. "Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 261-271, April.
    16. Mosheiov, Gur & Sarig, Assaf, 2010. "Minimum weighted number of tardy jobs on an m-machine flow-shop with a critical machine," European Journal of Operational Research, Elsevier, vol. 201(2), pages 404-408, March.
    17. François Clautiaux & Boris Detienne & Henri Lefebvre, 2023. "A two-stage robust approach for minimizing the weighted number of tardy jobs with objective uncertainty," Journal of Scheduling, Springer, vol. 26(2), pages 169-191, April.
    18. Asano, Makoto & Ohta, Hiroshi, 1996. "Single machine scheduling using dominance relation to minimize earliness subject to ready and due times," International Journal of Production Economics, Elsevier, vol. 44(1-2), pages 35-43, June.
    19. Stéphane Dauzère‐Pérès & Marc Sevaux, 2003. "Using Lagrangean relaxation to minimize the weighted number of late jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(3), pages 273-288, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:150:y:2007:i:1:p:137-157:10.1007/s10479-006-0161-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.