IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v147y2006i1p235-25310.1007-s10479-006-0067-y.html
   My bibliography  Save this article

Multiobjective design of survivable IP networks

Author

Listed:
  • Peter Broström
  • Kaj Holmberg

Abstract

Modern communication networks often use Internet Protocol routing and the intra-domain protocol OSPF (Open Shortest Path First). The routers in such a network calculate the shortest path to each destination and send the traffic on these paths, using load balancing. The issue of survivability, i.e. the question of how much traffic the network will be able to accommodate if components fail, is increasingly important. We consider the problem of designing a survivable IP network, which also requires determining the routing of the traffic. This is done by choosing the weights used for the shortest path calculations. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Peter Broström & Kaj Holmberg, 2006. "Multiobjective design of survivable IP networks," Annals of Operations Research, Springer, vol. 147(1), pages 235-253, October.
  • Handle: RePEc:spr:annopr:v:147:y:2006:i:1:p:235-253:10.1007/s10479-006-0067-y
    DOI: 10.1007/s10479-006-0067-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0067-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0067-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Ericsson & M.G.C. Resende & P.M. Pardalos, 2002. "A Genetic Algorithm for the Weight Setting Problem in OSPF Routing," Journal of Combinatorial Optimization, Springer, vol. 6(3), pages 299-333, September.
    2. Kaj Holmberg & Di Yuan, 2000. "A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem," Operations Research, INFORMS, vol. 48(3), pages 461-481, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayşegül Altın & Bernard Fortz & Mikkel Thorup & Hakan Ümit, 2013. "Intra-domain traffic engineering with shortest path routing protocols," Annals of Operations Research, Springer, vol. 204(1), pages 65-95, April.
    2. Changyong Zhang, 2017. "An origin-based model for unique shortest path routing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 935-951, August.
    3. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    4. Bernard Gendron & Luis Gouveia, 2017. "Reformulations by Discretization for Piecewise Linear Integer Multicommodity Network Flow Problems," Transportation Science, INFORMS, vol. 51(2), pages 629-649, May.
    5. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    6. Andrade, Carlos E. & Toso, Rodrigo F. & Gonçalves, José F. & Resende, Mauricio G.C., 2021. "The Multi-Parent Biased Random-Key Genetic Algorithm with Implicit Path-Relinking and its real-world applications," European Journal of Operational Research, Elsevier, vol. 289(1), pages 17-30.
    7. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    8. Fausto Errico & Teodor Gabriel Crainic & Federico Malucelli & Maddalena Nonato, 2017. "A Benders Decomposition Approach for the Symmetric TSP with Generalized Latency Arising in the Design of Semiflexible Transit Systems," Transportation Science, INFORMS, vol. 51(2), pages 706-722, May.
    9. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    10. Ada Suk‐fung Ng & Trilochan Sastry & Janny M.Y. Leung & X.Q. Cai, 2004. "On the uncapacitated K‐commodity network design problem with zero flow‐costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(8), pages 1149-1172, December.
    11. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2014. "Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design," European Journal of Operational Research, Elsevier, vol. 234(3), pages 874-884.
    12. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    13. Yan, Shangyao & Lin, Jenn-Rong & Lai, Chun-Wei, 2013. "The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 34-48.
    14. Gendron, Bernard, 2002. "A note on "a dual-ascent approach to the fixed-charge capacitated network design problem"," European Journal of Operational Research, Elsevier, vol. 138(3), pages 671-675, May.
    15. Ada Alvarez & José González-Velarde & Karim De-Alba, 2005. "Scatter Search for Network Design Problem," Annals of Operations Research, Springer, vol. 138(1), pages 159-178, September.
    16. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    17. Mauricio Resende, 2012. "Biased random-key genetic algorithms with applications in telecommunications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 130-153, April.
    18. Ingmar Steinzen & Vitali Gintner & Leena Suhl & Natalia Kliewer, 2010. "A Time-Space Network Approach for the Integrated Vehicle- and Crew-Scheduling Problem with Multiple Depots," Transportation Science, INFORMS, vol. 44(3), pages 367-382, August.
    19. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    20. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:147:y:2006:i:1:p:235-253:10.1007/s10479-006-0067-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.