IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v100y2016i4d10.1007_s10182-016-0266-z.html
   My bibliography  Save this article

Likelihood-based inference for multivariate skew scale mixtures of normal distributions

Author

Listed:
  • Clécio S. Ferreira

    (Federal University of Juiz de Fora)

  • Víctor H. Lachos

    (Universidade Estadual de Campinas)

  • Heleno Bolfarine

    (Universidade de São Paulo)

Abstract

Scale mixtures of normal distributions are often used as a challenging class for statistical analysis of symmetrical data. Recently, Ferreira et al. (Stat Methodol 8:154–171, 2011) defined the univariate skew scale mixtures of normal distributions that offer much needed flexibility by combining both skewness with heavy tails. In this paper, we develop a multivariate version of the skew scale mixtures of normal distributions, with emphasis on the multivariate skew-Student-t, skew-slash and skew-contaminated normal distributions. The main virtue of the members of this family of distributions is that they are easy to simulate from and they also supply genuine expectation/conditional maximisation either algorithms for maximum likelihood estimation. The observed information matrix is derived analytically to account for standard errors. Results obtained from real and simulated datasets are reported to illustrate the usefulness of the proposed method.

Suggested Citation

  • Clécio S. Ferreira & Víctor H. Lachos & Heleno Bolfarine, 2016. "Likelihood-based inference for multivariate skew scale mixtures of normal distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 421-441, October.
  • Handle: RePEc:spr:alstar:v:100:y:2016:i:4:d:10.1007_s10182-016-0266-z
    DOI: 10.1007/s10182-016-0266-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-016-0266-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-016-0266-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roderick J. A. Little, 1988. "Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 23-38, March.
    2. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Zeller, Camila Borelli, 2014. "Multivariate measurement error models using finite mixtures of skew-Student t distributions," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 179-198.
    3. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Prates, Marcos O., 2012. "Multivariate mixture modeling using skew-normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 126-142, January.
    4. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    5. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    6. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akram Hoseinzadeh & Mohsen Maleki & Zahra Khodadadi, 2021. "Heteroscedastic nonlinear regression models using asymmetric and heavy tailed two-piece distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 451-467, September.
    2. Graciliano M. S. Louredo & Camila B. Zeller & Clécio S. Ferreira, 2022. "Estimation and Influence Diagnostics for the Multivariate Linear Regression Models with Skew Scale Mixtures of Normal Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 204-242, May.
    3. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    4. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    5. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    6. Wan-Lun Wang & Ahad Jamalizadeh & Tsung-I Lin, 2020. "Finite mixtures of multivariate scale-shape mixtures of skew-normal distributions," Statistical Papers, Springer, vol. 61(6), pages 2643-2670, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    2. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    5. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    6. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    7. Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.
    8. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    9. Loperfido, Nicola, 2008. "A note on skew-elliptical distributions and linear functions of order statistics," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3184-3186, December.
    10. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    11. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    12. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    13. Batiz-Zuk, Enrique & Christodoulakis, George & Poon, Ser-Huang, 2015. "Credit contagion in the presence of non-normal shocks," International Review of Financial Analysis, Elsevier, vol. 37(C), pages 129-139.
    14. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    15. Reinaldo B. Arellano-Valle, 2010. "On the information matrix of the multivariate skew-t model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 371-386.
    16. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    17. Shushi, Tomer, 2018. "A proof for the existence of multivariate singular generalized skew-elliptical density functions," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 50-55.
    18. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    19. Luca Greco, 2011. "Minimum Hellinger distance based inference for scalar skew-normal and skew-t distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 120-137, May.
    20. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:100:y:2016:i:4:d:10.1007_s10182-016-0266-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.