Optimal tuning parameter estimation in maximum penalized likelihood method
Author
Abstract
Suggested Citation
DOI: 10.1007/s10463-008-0186-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yoshisuke Nonaka & Sadanori Konishi, 2005. "Nonlinear regression modeling using regularized local likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 617-635, December.
- Sadanori Konishi, 2004. "Bayesian information criteria and smoothing parameter selection in radial basis function networks," Biometrika, Biometrika Trust, vol. 91(1), pages 27-43, March.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
- White, Halbert, 1983. "Corrigendum [Maximum Likelihood Estimation of Misspecified Models]," Econometrica, Econometric Society, vol. 51(2), pages 513-513, March.
- Seiya Imoto & Sadanori Konishi, 2003. "Selection of smoothing parameters inB-spline nonparametric regression models using information criteria," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 671-687, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics.
- Alexander Robitzsch, 2022. "Comparing the Robustness of the Structural after Measurement (SAM) Approach to Structural Equation Modeling (SEM) against Local Model Misspecifications with Alternative Estimation Approaches," Stats, MDPI, vol. 5(3), pages 1-42, July.
- Yoshida, Takuma, 2018. "Semiparametric method for model structure discovery in additive regression models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 124-136.
- Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
- Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
- Xiong, Wei & Wang, Dehui & Deng, Dianliang & Wang, Xinyang & Zhang, Wanying, 2022. "Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Shi, Chengchun & Song, Rui & Lu, Wenbin, 2016. "Robust learning for optimal treatment decision with NP-dimensionality," LSE Research Online Documents on Economics 102114, London School of Economics and Political Science, LSE Library.
- Francis K. C. Hui & Samuel Müller & A. H. Welsh, 2017. "Joint Selection in Mixed Models using Regularized PQL," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1323-1333, July.
- Tomohiro Ando & Sadanori Konishi, 2009. "Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 331-353, June.
- Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
- Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
- Lu, Wenqi & Qin, Guoyou & Zhu, Zhongyi & Tu, Dongsheng, 2021. "Multiply robust subgroup identification for longitudinal data with dropouts via median regression," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
- P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016.
"Removing Specification Errors from the Usual Formulation of Binary Choice Models,"
Econometrics, MDPI, vol. 4(2), pages 1-21, June.
- P. A. V. B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Discussion Papers in Economics 16/11, Division of Economics, School of Business, University of Leicester.
- Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017.
"Anchoring the yield curve using survey expectations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
- Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2013. "Anchoring the yield curve using survey expectations," CeMMAP working papers CWP52/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Giacomini, Raffaella & Ragusa, Giuseppe & Altavilla, Carlo, 2013. "Anchoring the Yield Curve Using Survey Expectations," CEPR Discussion Papers 9738, C.E.P.R. Discussion Papers.
- Giacomini, Raffaella & Altavilla, Carlo & Ragusa, Giuseppe, 2014. "Anchoring the yield curve using survey expectations," Working Paper Series 1632, European Central Bank.
- Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2013. "Anchoring the yield curve using survey expectations," CeMMAP working papers 52/13, Institute for Fiscal Studies.
- Fernando Rios-Avila & Gustavo J. Canavire-Bacarreza, 2017. "Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach," Documentos de Trabajo de Valor Público 15659, Universidad EAFIT.
- Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
- Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
- Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.
- Broze, Laurence & Gourieroux, Christian, 1998.
"Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators,"
Journal of Econometrics, Elsevier, vol. 85(1), pages 75-98, July.
- BROZE, Laurence & GOURIEROUX, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," LIDAM Reprints CORE 1319, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
More about this item
Keywords
Cross-validation; Direct plug-in method; Generalized information criterion; Kullback–Leibler information; Maximum penalized likelihood method; Penalized spline; Ridge regression; Tuning parameter estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:62:y:2010:i:3:p:413-438. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.