IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v57y2005i3p403-423.html
   My bibliography  Save this article

Estimation in additive cox models by marginal integration

Author

Listed:
  • Toshio Honda

Abstract

No abstract is available for this item.

Suggested Citation

  • Toshio Honda, 2005. "Estimation in additive cox models by marginal integration," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 403-423, September.
  • Handle: RePEc:spr:aistmt:v:57:y:2005:i:3:p:403-423
    DOI: 10.1007/BF02509232
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02509232
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02509232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linton, Oliver B., 2000. "Efficient Estimation Of Generalized Additive Nonparametric Regression Models," Econometric Theory, Cambridge University Press, vol. 16(4), pages 502-523, August.
    2. Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
    3. Linton, Oliver & Perch Nielsen, Jens & van de Geer, Sara, 2001. "Estimating multiplicative and additive hazard functions by kernel methods," LSE Research Online Documents on Economics 2168, London School of Economics and Political Science, LSE Library.
    4. Oliver LINTON, "undated". "Kernel estimation in a nonparametric marker dependent Hazard Model," Statistic und Oekonometrie 9313, Humboldt Universitaet Berlin.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Liu & Jianbo Li & Riquan Zhang, 2014. "General partially linear additive transformation model with right-censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2257-2269, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Huazhen & Pan, Lixian & Lv, Shaogao & Zhang, Wenyang, 2018. "Efficient estimation and computation for the generalised additive models with unknown link function," Journal of Econometrics, Elsevier, vol. 202(2), pages 230-244.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    5. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    6. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    7. Degui Li & Oliver Linton & Zudi Lu, 2012. "A Flexible Semiparametric Model for Time Series," Monash Econometrics and Business Statistics Working Papers 17/12, Monash University, Department of Econometrics and Business Statistics.
    8. Chuan-hua Wei & Chunling Liu, 2012. "Statistical inference on semi-parametric partial linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 809-823, December.
    9. Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
    10. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
    11. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    12. Chuanhua Wei & Yubo Luo & Xizhi Wu, 2012. "Empirical likelihood for partially linear additive errors-in-variables models," Statistical Papers, Springer, vol. 53(2), pages 485-496, May.
    13. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    14. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    15. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    16. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    17. Oliver Linton & E. Mammen & J. Nielsen & C. Tanggaard, 1998. "Estimating Yield Curves by Kernel Smoothing Methods," Cowles Foundation Discussion Papers 1205, Cowles Foundation for Research in Economics, Yale University.
    18. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    19. Théophile T. Azomahou & Bity Diene & Mbaye Diene, 2009. "Technology frontier, labor productivity and economic growth: Evidence from OECD countries," DEM Discussion Paper Series 09-19, Department of Economics at the University of Luxembourg.
    20. Su, Liangjun & Ullah, Aman, 2008. "Local polynomial estimation of nonparametric simultaneous equations models," Journal of Econometrics, Elsevier, vol. 144(1), pages 193-218, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:57:y:2005:i:3:p:403-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.