IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i2d10.1007_s11634-018-0313-6.html
   My bibliography  Save this article

Model-based approach for household clustering with mixed scale variables

Author

Listed:
  • Christian Carmona

    (University of Oxford)

  • Luis Nieto-Barajas

    (ITAM)

  • Antonio Canale

    (University of Padua)

Abstract

The Ministry of Social Development in Mexico is in charge of creating and assigning social programmes targeting specific needs in the population for the improvement of the quality of life. To better target the social programmes, the Ministry is aimed to find clusters of households with the same needs based on demographic characteristics as well as poverty conditions of the household. Available data consists of continuous, ordinal, and nominal variables, all of which come from a non-i.i.d complex design survey sample. We propose a Bayesian nonparametric mixture model that jointly models a set of latent variables, as in an underlying variable response approach, associated to the observed mixed scale data and accommodates for the different sampling probabilities. The performance of the model is assessed via simulated data. A full analysis of socio-economic conditions in households in the Mexican State of Mexico is presented.

Suggested Citation

  • Christian Carmona & Luis Nieto-Barajas & Antonio Canale, 2019. "Model-based approach for household clustering with mixed scale variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 559-583, June.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0313-6
    DOI: 10.1007/s11634-018-0313-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-018-0313-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-018-0313-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    2. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    3. Pledger, Shirley & Arnold, Richard, 2014. "Multivariate methods using mixtures: Correspondence analysis, scaling and pattern-detection," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 241-261.
    4. L.G. Leon-Novelo & X. Zhou & B. Nebiyou Bekele & P. Müller, 2010. "Assessing Toxicities in a Clinical Trial: Bayesian Inference for Ordinal Data Nested within Categories," Biometrics, The International Biometric Society, vol. 66(3), pages 966-974, September.
    5. Antonio Canale & Bruno Scarpa, 2016. "Bayesian nonparametric location–scale–shape mixtures," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 113-130, March.
    6. Dipankar Bandyopadhyay & Antonio Canale, 2016. "Non-parametric spatial models for clustered ordered periodontal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 619-640, August.
    7. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corradin, Riccardo & Nieto-Barajas, Luis Enrique & Nipoti, Bernardo, 2022. "Optimal stratification of survival data via Bayesian nonparametric mixtures," Econometrics and Statistics, Elsevier, vol. 22(C), pages 17-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Fernández & Richard Arnold & Shirley Pledger & Ivy Liu & Roy Costilla, 2019. "Finite mixture biclustering of discrete type multivariate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 117-143, March.
    2. Jacques, Julien & Biernacki, Christophe, 2018. "Model-based co-clustering for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 101-115.
    3. Álvarez de Toledo, Pablo & Núñez, Fernando & Usabiaga, Carlos, 2018. "Matching and clustering in square contingency tables. Who matches with whom in the Spanish labour market," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 135-159.
    4. Tatjana Miljkovic & Daniel Fernández, 2018. "On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio," Risks, MDPI, vol. 6(2), pages 1-18, May.
    5. Kemmawadee Preedalikit & Daniel Fernández & Ivy Liu & Louise McMillan & Marta Nai Ruscone & Roy Costilla, 2024. "Row mixture-based clustering with covariates for ordinal responses," Computational Statistics, Springer, vol. 39(5), pages 2511-2555, July.
    6. Daniel Fernández & Radim J. Sram & Miroslav Dostal & Anna Pastorkova & Hans Gmuender & Hyunok Choi, 2018. "Modeling Unobserved Heterogeneity in Susceptibility to Ambient Benzo[ a ]pyrene Concentration among Children with Allergic Asthma Using an Unsupervised Learning Algorithm," IJERPH, MDPI, vol. 15(1), pages 1-18, January.
    7. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    8. Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.
    9. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    10. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    11. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    12. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
    13. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    14. Eleni Matechou & Ivy Liu & Daniel Fernández & Miguel Farias & Bergljot Gjelsvik, 2016. "Biclustering Models for Two-Mode Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 611-624, September.
    15. D. Fernández & S. Pledger, 2016. "Categorising Count Data into Ordinal Responses with Application to Ecological Communities," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 348-362, June.
    16. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Forecasting With Dynamic Panel Data Models," Econometrica, Econometric Society, vol. 88(1), pages 171-201, January.
    17. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
    18. Norets, Andriy & Pelenis, Justinas, 2022. "Adaptive Bayesian estimation of conditional discrete-continuous distributions with an application to stock market trading activity," Journal of Econometrics, Elsevier, vol. 230(1), pages 62-82.
    19. Julyan Arbel & Riccardo Corradin & Bernardo Nipoti, 2021. "Dirichlet process mixtures under affine transformations of the data," Computational Statistics, Springer, vol. 36(1), pages 577-601, March.
    20. Scott D. Foster & Nicole A. Hill & Mitchell Lyons, 2017. "Ecological grouping of survey sites when sampling artefacts are present," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 1031-1047, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:2:d:10.1007_s11634-018-0313-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.