IDEAS home Printed from https://ideas.repec.org/a/sae/vikjou/v46y2021i1p13-26.html
   My bibliography  Save this article

Infection Testing at Scale: An Examination of Pooled Testing Diagnostics

Author

Listed:
  • Tarun Jain
  • Bijendra Nath Jain

Abstract

Executive Summary In pandemics or epidemics, public health authorities need to rapidly test a large number of individuals without adequate testing kits. We propose a testing protocol to accelerate infection diagnostics by combining multiple samples, and in case of positive results, re-test individual samples. The key insight is that a negative result in the first stage implies negative infection for all individuals. Thus, a single test could rule out infection in multiple individuals. Using simulations, we show that this protocol reduces the required number of testing kits, especially when the infection rate is low, alleviating a key bottleneck for public health authorities in times of pandemics and epidemics such as COVID-19. Our proposed protocol is expected to be more effective when the infection rate is low, which suggests that it is better suited for early stage and large-scale, population-wide testing. However, the managerial trade-off is that the protocol has costs in additional time for returning test results and an increased number of false negatives. We discuss applications of pooled testing in understanding population-wide testing to understand infection prevalence, to diagnose infections in high-risk groups of individuals, and to identify disease cold spots.

Suggested Citation

  • Tarun Jain & Bijendra Nath Jain, 2021. "Infection Testing at Scale: An Examination of Pooled Testing Diagnostics," Vikalpa: The Journal for Decision Makers, , vol. 46(1), pages 13-26, March.
  • Handle: RePEc:sae:vikjou:v:46:y:2021:i:1:p:13-26
    DOI: 10.1177/02560909211018906
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/02560909211018906
    Download Restriction: no

    File URL: https://libkey.io/10.1177/02560909211018906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence M. Wein & Stefanos A. Zenios, 1996. "Pooled Testing for HIV Screening: Capturing the Dilution Effect," Operations Research, INFORMS, vol. 44(4), pages 543-569, August.
    2. Christian Gollier & Olivier Gossner, 2020. "Group testing against Covid-19," Post-Print hal-02550740, HAL.
    3. Aiyi Liu & Chunling Liu & Zhiwei Zhang & Paul S. Albert, 2012. "Optimality of group testing in the presence of misclassification," Biometrika, Biometrika Trust, vol. 99(1), pages 245-251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Ngoc T. & Bish, Ebru K. & Bish, Douglas R., 2021. "Optimal pooled testing design for prevalence estimation under resource constraints," Omega, Elsevier, vol. 105(C).
    2. Lipnowski, Elliot & Ravid, Doron, 2021. "Pooled testing for quarantine decisions," Journal of Economic Theory, Elsevier, vol. 198(C).
    3. Christian Gollier, 2020. "Cost–benefit analysis of age‐specific deconfinement strategies," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 22(6), pages 1746-1771, December.
    4. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    5. Jean-Noël Barrot & Basile Grassi & Julien Sauvagnat, 2020. "Estimating the Costs and Benefits of Mandated Business Closures in a Pandemic," Working Papers hal-02896739, HAL.
    6. Bar-Lev, S.K. & Parlar, M. & Perry, D. & Stadje, W. & van der Duyn Schouten, F.A., 2007. "Applications of bulk queues to group testing models with incomplete identification," Other publications TiSEM 0b1bfa5e-c1e6-43ec-9684-1, Tilburg University, School of Economics and Management.
    7. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    8. Bar-Lev, S.K. & Stadje, W. & van der Duyn Schouten, F.A., 2002. "Hypergeometric Group Testing with Incomplete Information," Other publications TiSEM bbeda767-e037-4441-a6d4-6, Tilburg University, School of Economics and Management.
    9. Yongxi Cheng & Yinfeng Xu, 2014. "An efficient FPRAS type group testing procedure to approximate the number of defectives," Journal of Combinatorial Optimization, Springer, vol. 27(2), pages 302-314, February.
    10. Koen B. Pouwels & Laurence S. J. Roope & Adrian Barnett & David J. Hunter & Terry M. Nolan & Philip M. Clarke, 2020. "Group Testing for SARS-CoV-2: Forward to the Past?," PharmacoEconomics - Open, Springer, vol. 4(2), pages 207-210, June.
    11. Rahul Deb & Mallesh Pai & Akhil Vohra & Rakesh Vohra, 2022. "Testing alone is insufficient," Review of Economic Design, Springer;Society for Economic Design, vol. 26(1), pages 1-21, March.
    12. Christelle Baunez & Mickael Degoulet & Stéphane Luchini & Patrick A. Pintus, 2020. "Sub-National Allocation of COVID-19 Tests: An Efficiency Criterion with an Application to Italian Regions," AMSE Working Papers 2011, Aix-Marseille School of Economics, France.
    13. Hanno Beck & Aloys Prinz & Elmar Wolfstetter, 2022. "Vaccination Gap, Vaccination Fraud and Inefficient Testing," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 57(5), pages 330-336, September.
    14. Vincent Brault & Bastien Mallein & Jean-François Rupprecht, 2021. "Group testing as a strategy for COVID-19 epidemiological monitoring and community surveillance," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-25, March.
    15. Claeys, Dieter & Walraevens, Joris & Laevens, Koenraad & Bruneel, Herwig, 2010. "A queueing model for general group screening policies and dynamic item arrivals," European Journal of Operational Research, Elsevier, vol. 207(2), pages 827-835, December.
    16. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    17. Hrayer Aprahamian & Hadi El-Amine, 2022. "Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 150-164, January.
    18. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    19. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    20. Ely, Jeffrey & Galeotti, Andrea & Jann, Ole & Steiner, Jakub, 2021. "Optimal test allocation," Journal of Economic Theory, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:vikjou:v:46:y:2021:i:1:p:13-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.