IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i1p216-229.html
   My bibliography  Save this article

Functional healthy state evaluation approach based on phased state task network for intelligent multistation manufacturing systems

Author

Listed:
  • Wenzhuo Wang
  • Yu Zhao
  • Yihai He
  • Xiuzhen Yang
  • Jishan Zhang

Abstract

The core function of the intelligent multistation manufacturing system is to continuously and stably output a specified number of qualified products which can meet the requirements of production tasks through the machine at each station. Consequently, only the analyzing and modeling of the physical failure of the machine cannot realize the functional healthy state evaluation of the manufacturing system oriented to product quality, nor can it describe the phased degradation characteristics during the task execution. Therefore, a novel evaluation approach of the functional healthy state based on phased state task network (PSTN) theory for the intelligent multistation manufacturing systems is proposed in this study. First, the connotation of a functional healthy state of the intelligent multistation manufacturing system is expounded in combination with the performance state of each component in the system from the perspective of system engineering. Second, the PSTN of the intelligent multistation manufacturing system is established, and an integrated mission reliability model of the system is built on it. Third, a functional healthy state evaluation approach is proposed on the basis of the integrated mission reliability model and fuzzy evidence theory. Finally, a cylinder head manufacturing system is taken as an example to verify the proposed method, and sensitivity and comparative analyses are carried out to illustrate its effectiveness and advantages.

Suggested Citation

  • Wenzhuo Wang & Yu Zhao & Yihai He & Xiuzhen Yang & Jishan Zhang, 2024. "Functional healthy state evaluation approach based on phased state task network for intelligent multistation manufacturing systems," Journal of Risk and Reliability, , vol. 238(1), pages 216-229, February.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:216-229
    DOI: 10.1177/1748006X221125078
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221125078
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221125078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guojun Zhang & Yuhao Deng & Haiping Zhu & Hui Yin, 2015. "Delayed maintenance policy optimisation based on control chart," International Journal of Production Research, Taylor & Francis Journals, vol. 53(2), pages 341-353, January.
    2. He, Yihai & Zhao, Yixiao & Han, Xiao & Zhou, Di & Wang, Wenzhuo, 2020. "Functional risk-oriented health prognosis approach for intelligent manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Dongjin Lee & Rong Pan, 2017. "Predictive maintenance of complex system with multi-level reliability structure," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4785-4801, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xiaofang & Guo, Linghui & Bai, Xu & Li, Yushan & Zan, Yingfei & Luo, Jiaxuan, 2025. "A multi-phase mission success evaluation approach for maritime autonomous surface ships considering equipment performance degradation and system composition changes," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenzhuo & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Zheng, Xin & Zhao, Yu, 2022. "Mission reliability driven functional healthy state modeling approach considering production rhythm and workpiece quality for manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Li, Yao & He, Yihai & Liao, Ruoyu & Zheng, Xin & Dai, Wei, 2022. "Integrated predictive maintenance approach for multistate manufacturing system considering geometric and non-geometric defects of products," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Dai, Wei, 2024. "Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Feng, Tianyu & He, Yihai & Shi, Rui & Li, Jiayang & Dai, Wei & Yu, Shuang, 2025. "Functional risk modeling and selective maintenance optimization approach for multi-stage manufacturing system considering operational robustness," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    6. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Ai, Jun, 2022. "Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint," Omega, Elsevier, vol. 61(C), pages 110-126.
    9. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," International Journal of Production Economics, Elsevier, vol. 264(C).
    11. Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Ahmed, Umair & Carpitella, Silvia & Certa, Antonella, 2021. "An integrated methodological approach for optimising complex systems subjected to predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Sabri-Laghaie, Kamyar & Fathi, Mahdi & Zio, Enrico & Mazhar, Maryam, 2022. "A novel reliability monitoring scheme based on the monitoring of manufacturing quality error rates," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Chen, Liwei & Cheng, Chunchun & Dui, Hongyan & Xing, Liudong, 2022. "Maintenance cost-based importance analysis under different maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    17. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    18. Yang, Li & Zhou, Shihan & Ma, Xiaobing & Chen, Yi & Jia, Heping & Dai, Wei, 2024. "Group machinery intelligent maintenance: Adaptive health prediction and global dynamic maintenance decision-making," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    19. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:216-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.