IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i6p1248-1258.html
   My bibliography  Save this article

An integrated lifetime prediction method for double-nut ball screws subject to preload loss failure mode

Author

Listed:
  • Hua-Xi Zhou
  • Chang-Guang Zhou
  • Hu-Tian Feng

Abstract

Existing lifetime prediction methods for ball screws are mainly based on the failure mechanism modeling, while the accuracy is quite limited due to the need for a large number of failure samples and the ignorance of the uncertainty during the failure evolution. Therefore, we proposed an integrated lifetime prediction method for the double-nut ball screws utilizing both the degradation mechanism model and the uncertainty evaluation method. The Bayesian inference is used to update the posterior distribution of the wear coefficient on the basis of the condition monitoring data. The posterior distribution of wear coefficient gets narrower with more degraded preload data acquired, which indicates the uncertainty of the wear coefficient due to different material properties and working conditions is decreased. The experimental results showed that, without the need for a large number of failure samples, the proposed integrated lifetime prediction method for double-nut ball screws achieved much higher accuracy than existing methods.

Suggested Citation

  • Hua-Xi Zhou & Chang-Guang Zhou & Hu-Tian Feng, 2023. "An integrated lifetime prediction method for double-nut ball screws subject to preload loss failure mode," Journal of Risk and Reliability, , vol. 237(6), pages 1248-1258, December.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:6:p:1248-1258
    DOI: 10.1177/1748006X221110969
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221110969
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221110969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Mosallam & K. Medjaher & N. Zerhouni, 2016. "Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1037-1048, October.
    2. Li, Xiang & Zhang, Wei & Ding, Qian, 2019. "Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 208-218.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    2. Merainani, Boualem & Laddada, Sofiane & Bechhoefer, Eric & Chikh, Mohamed Abdessamed Ait & Benazzouz, Djamel, 2022. "An integrated methodology for estimating the remaining useful life of high-speed wind turbine shaft bearings with limited samples," Renewable Energy, Elsevier, vol. 182(C), pages 1141-1151.
    3. Shujie Yang & Peikun Yang & Hao Yu & Jing Bai & Wuwei Feng & Yuxiang Su & Yulin Si, 2022. "A 2DCNN-RF Model for Offshore Wind Turbine High-Speed Bearing-Fault Diagnosis under Noisy Environment," Energies, MDPI, vol. 15(9), pages 1-16, May.
    4. Feiyue Deng & Yan Bi & Yongqiang Liu & Shaopu Yang, 2021. "Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    5. Yiwei Wang & Jian Zhou & Lianyu Zheng & Christian Gogu, 2022. "An end-to-end fault diagnostics method based on convolutional neural network for rotating machinery with multiple case studies," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 809-830, March.
    6. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Riku-Pekka Nikula & Konsta Karioja & Kauko Leiviskä & Esko Juuso, 2019. "Prediction of mechanical stress in roller leveler based on vibration measurements and steel strip properties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1563-1579, April.
    8. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    10. Thi-Tinh Le & Seok-Ju Lee & Minh-Chau Dinh & Minwon Park, 2023. "Design of an Improved Remaining Useful Life Prediction Model Based on Vibration Signals of Wind Turbine Rotating Components," Energies, MDPI, vol. 17(1), pages 1-18, December.
    11. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    12. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    13. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Xiangxi Du & Yanhua Sun, 2021. "Performance for rotor system of hybrid electromagnetic bearing and elastic foil gas bearing with dynamic characteristics analysis under deep learning," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    15. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    16. Thirupathi Samala & Vijaya Kumar Manupati & Maria Leonilde R. Varela & Goran Putnik, 2021. "Investigation of Degradation and Upgradation Models for Flexible Unit Systems: A Systematic Literature Review," Future Internet, MDPI, vol. 13(3), pages 1-18, February.
    17. Xiang Li & Xiaodong Jia & Qibo Yang & Jay Lee, 2020. "Quality analysis in metal additive manufacturing with deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2003-2017, December.
    18. Lewis, Austin D. & Groth, Katrina M., 2023. "A comparison of DBN model performance in SIPPRA health monitoring based on different data stream discretization methods," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
    20. Li, Xingyu & Krivtsov, Vasiliy & Arora, Karunesh, 2022. "Attention-based deep survival model for time series data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:6:p:1248-1258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.