IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i4p605-614.html
   My bibliography  Save this article

Sample selection of prognostics validation test based on multi-stage Wiener process

Author

Listed:
  • Zhiao Zhao
  • Yong Zhang
  • Guanjun Liu
  • Jing Qiu

Abstract

Sample allocation and selection technology is of great significance in the test plan design of prognostics validation. Considering the existing researches, the importance of prognostics samples of different moments is not considered in the degradation process of a single failure. Normally, prognostics samples are generated under the same time interval mechanism. However, a prognostics system may have low prognostics accuracy because of the small quantity of failure degradation and measurement randomness in the early stage of a failure degradation process. Historical degradation data onto equipment failure modes are collected, and the degradation process model based on the multi-stage Wiener process is established. Based on the multi-stage Wiener process model, we choose four parameters to describe different degradation stages in a degradation process. According to four parameters, the sample selection weight of each degradation stage is calculated and the weight of each degradation stage is used to select prognostics samples. Taking a bearing wear fault of a helicopter transmission device as an example, its degradation process is established and sample selection weights are calculated. According to the sample selection weight of each degradation process, we accomplish the prognostics sample selection of the bearing wear fault. The results show that the prognostics sample selection method proposed in this article has good applicability.

Suggested Citation

  • Zhiao Zhao & Yong Zhang & Guanjun Liu & Jing Qiu, 2019. "Sample selection of prognostics validation test based on multi-stage Wiener process," Journal of Risk and Reliability, , vol. 233(4), pages 605-614, August.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:4:p:605-614
    DOI: 10.1177/1748006X18805835
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18805835
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18805835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    2. Bhattacharya, Ritwik & Pradhan, Biswabrata & Dewanji, Anup, 2015. "Computation of optimum reliability acceptance sampling plans in presence of hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 91-100.
    3. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    3. Wang, Changxi & Elsayed, Elsayed A., 2020. "Stochastic modeling of corrosion growth," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    5. Ji Hwan Cha & Sophie Mercier, 2022. "Two Reliability Acceptance Sampling Plans for Items Subject to Wiener Process of Degradation," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1651-1668, September.
    6. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    7. Nguyen, Khanh T.P. & Fouladirad, Mitra & Grall, Antoine, 2018. "Model selection for degradation modeling and prognosis with health monitoring data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 105-116.
    8. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    9. Narayanaswamy Balakrishnan & Chengwei Qin, 2019. "First Passage Time of a Lévy Degradation Model with Random Effects," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 315-329, March.
    10. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    11. Ma, Xiaoyang & Liu, Bin & Yang, Li & Peng, Rui & Zhang, Xiaodong, 2020. "Reliability analysis and condition-based maintenance optimization for a warm standby cooling system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Zhang, Nan & Fouladirad, Mitra & Barros, Anne & Zhang, Jun, 2020. "Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 159-167.
    13. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    14. Zhang, Mimi & Gaudoin, Olivier & Xie, Min, 2015. "Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 245(2), pages 531-541.
    15. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    16. Thomas Michael Welte & Iver Bakken Sperstad & Espen Høegh Sørum & Magne Lorentzen Kolstad, 2017. "Integration of Degradation Processes in a Strategic Offshore Wind Farm O&M Simulation Model," Energies, MDPI, vol. 10(7), pages 1-18, July.
    17. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Phuc Do & Christophe Bérenguer, 2022. "Residual life-based importance measures for predictive maintenance decision-making," Journal of Risk and Reliability, , vol. 236(1), pages 98-113, February.
    19. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    20. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:4:p:605-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.