IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v228y2014i6p631-640.html
   My bibliography  Save this article

Feature generation method for fault diagnosis of closed cable loop used in deployable space structures

Author

Listed:
  • Zehao Pan
  • Jianing Wu
  • Shaoze Yan
  • Yongxia Gu

Abstract

In order to diagnose the fault of closed cable loop in deployable space structures, a method of feature generation from deployment angle is proposed. Existing reliability analysis of deployable space structure is usually based on estimated probability or expert knowledge, which are inaccurate and will attenuate the credibility of analysis result. In order to ground the knowledge of the reliability of state-of-the-art closed cable loop on engineering practices, we studied an approach that can identify the features of the data transmitted from spacecraft and automatically diagnose the faults in closed cable loop. The primary feature was identified as higher angle discrepancy in synchronized angles when faults in closed cable loop occur. To reduce the probability of erroneous diagnosis, the loss of velocity concordance in synchronized angles is used jointly with the primary feature. The mathematical expressions of the two features are specified as average difference of angular displacement and Gini concordance of angular velocity. The classifier of normal and faulty closed cable loop is generated by support vector machine, whose training data are produced via simulation or experiments. Case study of a three-panel solar array adopts the method to generate features from simulation result, which serves as the training data for support vector machine. The trained classifier is further applied in the diagnosis of angular signals from an experimental setup and the results validate the effectiveness and robustness of the proposed method.

Suggested Citation

  • Zehao Pan & Jianing Wu & Shaoze Yan & Yongxia Gu, 2014. "Feature generation method for fault diagnosis of closed cable loop used in deployable space structures," Journal of Risk and Reliability, , vol. 228(6), pages 631-640, December.
  • Handle: RePEc:sae:risrel:v:228:y:2014:i:6:p:631-640
    DOI: 10.1177/1748006X14541436
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X14541436
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X14541436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Castet, Jean-Francois & Saleh, Joseph H., 2009. "Satellite and satellite subsystems reliability: Statistical data analysis and modeling," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1718-1728.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "A reliable framework for satellite networks achieving energy requirements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    3. Castet, Jean-Francois & Saleh, Joseph H., 2012. "On the concept of survivability, with application to spacecraft and space-based networks," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 123-138.
    4. Damircheli, Mahrad & Fakoor, Mahdi & Yadegari, Hamed, 2020. "Failure assessment logic model (FALM): A new approach for reliability analysis of satellite attitude control subsystem," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Jianing Wu & Shaoze Yan, 2014. "An approach to system reliability prediction for mechanical equipment using fuzzy reasoning Petri net," Journal of Risk and Reliability, , vol. 228(1), pages 39-51, February.
    6. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Single versus mixture Weibull distributions for nonparametric satellite reliability," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 295-300.
    9. Bai, Senyang & Jia, Xiang & Cheng, Zhijun & Guo, Bo, 2021. "Operation strategy optimization for on-orbit satellite subsystems considering multiple active switching," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Yang, Chen & Lu, Wanze & Xia, Yuanqing, 2023. "Reliability-constrained optimal attitude-vibration control for rigid-flexible coupling satellite using interval dimension-wise analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "An agent-based clustering framework for reliable satellite networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    14. Jia, Xiang & Cheng, Zhijun & Guo, Bo, 2022. "Reliability analysis for system by transmitting, pooling and integrating multi-source data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Bouwmeester, J. & Menicucci, A. & Gill, E.K.A., 2022. "Improving CubeSat reliability: Subsystem redundancy or improved testing?," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 311-322.
    17. Lowe, Christopher J. & Macdonald, Malcolm, 2020. "Space mission resilience with inter-satellite networking," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Kim, So Young & Castet, Jean-Francois & Saleh, Joseph H., 2012. "Spacecraft electrical power subsystem: Failure behavior, reliability, and multi-state failure analyses," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 55-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:228:y:2014:i:6:p:631-640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.