IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i11p1718-1728.html
   My bibliography  Save this article

Satellite and satellite subsystems reliability: Statistical data analysis and modeling

Author

Listed:
  • Castet, Jean-Francois
  • Saleh, Joseph H.

Abstract

Reliability has long been recognized as a critical attribute for space systems. Unfortunately, limited on-orbit failure data and statistical analyses of satellite reliability exist in the literature. To fill this gap, we recently conducted a nonparametric analysis of satellite reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our statistical analysis of satellite reliability and investigate satellite subsystems reliability. Because our dataset is censored, we make extensive use of the Kaplan–Meier estimator for calculating the reliability functions. We derive confidence intervals for the nonparametric reliability results for each subsystem and conduct parametric fits with Weibull distributions using the maximum likelihood estimation (MLE) approach. We finally conduct a comparative analysis of subsystems failure, identifying the “culprit subsystems†that drive satellite unreliability. The results here presented should prove particularly useful to the space industry for example in redesigning subsystem test and screening programs, or providing an empirical basis for redundancy allocation.

Suggested Citation

  • Castet, Jean-Francois & Saleh, Joseph H., 2009. "Satellite and satellite subsystems reliability: Statistical data analysis and modeling," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1718-1728.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:11:p:1718-1728
    DOI: 10.1016/j.ress.2009.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009001094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "An agent-based clustering framework for reliable satellite networks," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Jianing Wu & Shaoze Yan, 2014. "An approach to system reliability prediction for mechanical equipment using fuzzy reasoning Petri net," Journal of Risk and Reliability, , vol. 228(1), pages 39-51, February.
    3. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng & Gao, Su, 2021. "A reliable framework for satellite networks achieving energy requirements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Lowe, Christopher J. & Macdonald, Malcolm, 2020. "Space mission resilience with inter-satellite networking," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Castet, Jean-Francois & Saleh, Joseph H., 2012. "On the concept of survivability, with application to spacecraft and space-based networks," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 123-138.
    7. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    8. Bouwmeester, J. & Menicucci, A. & Gill, E.K.A., 2022. "Improving CubeSat reliability: Subsystem redundancy or improved testing?," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Damircheli, Mahrad & Fakoor, Mahdi & Yadegari, Hamed, 2020. "Failure assessment logic model (FALM): A new approach for reliability analysis of satellite attitude control subsystem," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    10. Bai, Senyang & Jia, Xiang & Cheng, Zhijun & Guo, Bo, 2021. "Operation strategy optimization for on-orbit satellite subsystems considering multiple active switching," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Yang, Chen & Lu, Wanze & Xia, Yuanqing, 2023. "Reliability-constrained optimal attitude-vibration control for rigid-flexible coupling satellite using interval dimension-wise analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Single versus mixture Weibull distributions for nonparametric satellite reliability," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 295-300.
    15. Zehao Pan & Jianing Wu & Shaoze Yan & Yongxia Gu, 2014. "Feature generation method for fault diagnosis of closed cable loop used in deployable space structures," Journal of Risk and Reliability, , vol. 228(6), pages 631-640, December.
    16. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 311-322.
    17. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    18. Jia, Xiang & Cheng, Zhijun & Guo, Bo, 2022. "Reliability analysis for system by transmitting, pooling and integrating multi-source data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    19. Kim, So Young & Castet, Jean-Francois & Saleh, Joseph H., 2012. "Spacecraft electrical power subsystem: Failure behavior, reliability, and multi-state failure analyses," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 55-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:11:p:1718-1728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.