IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v227y2013i5p513-522.html
   My bibliography  Save this article

Nonparametric predictive inference for system failure time based on bounds for the signature

Author

Listed:
  • Abdullah H Al-nefaiee
  • Frank PA Coolen

Abstract

System signatures provide a powerful framework for reliability assessment for systems consisting of exchangeable components. The use of signatures in nonparametric predictive inference has been presented and leads to lower and upper survival functions for the system failure time, given failure times of tested components. However, deriving the system signature is computationally complex. This article presents how limited information about the signature can be used to derive bounds on such lower and upper survival functions and related inferences. If such bounds are sufficiently decisive they also indicate that more detailed computation of the system signature is not required.

Suggested Citation

  • Abdullah H Al-nefaiee & Frank PA Coolen, 2013. "Nonparametric predictive inference for system failure time based on bounds for the signature," Journal of Risk and Reliability, , vol. 227(5), pages 513-522, October.
  • Handle: RePEc:sae:risrel:v:227:y:2013:i:5:p:513-522
    DOI: 10.1177/1748006X13485188
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X13485188
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X13485188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. F. Lawless & Marc Fredette, 2005. "Frequentist prediction intervals and predictive distributions," Biometrika, Biometrika Trust, vol. 92(3), pages 529-542, September.
    2. Da, Gaofeng & Zheng, Ben & Hu, Taizhong, 2012. "On computing signatures of coherent systems," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 142-150, January.
    3. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    2. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2016. "The structure function for system reliability as predictive (imprecise) probability," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 180-187.
    3. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    4. Yandan Yang & Hon Keung Tony Ng & Narayanaswamy Balakrishnan, 2019. "Expectation–maximization algorithm for system-based lifetime data with unknown system structure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 69-98, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaofeng Da & Lvyu Xia & Taizhong Hu, 2014. "On Computing Signatures of k-out-of-n Systems Consisting of Modules," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 223-233, March.
    2. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    3. Marichal, Jean-Luc & Mathonet, Pierre & Spizzichino, Fabio, 2015. "On modular decompositions of system signatures," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 19-32.
    4. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.
    5. Leila Mohammadi, 2017. "The joint signature of parallel systems for different permutations of failure times," Computational Statistics, Springer, vol. 32(4), pages 1727-1746, December.
    6. Sadiya & Mangey Ram & Akshay Kumar, 2022. "A New Approach to Compute System Reliability with Three-Serially Linked Modules," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    7. Qin, Jinlei & Coolen, Frank P.A., 2022. "Survival signature for reliability evaluation of a multi-state system with multi-state components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Frank PA Coolen & Tahani Coolen-Maturi & Abdullah H Al-nefaiee, 2014. "Nonparametric predictive inference for system reliability using the survival signature," Journal of Risk and Reliability, , vol. 228(5), pages 437-448, October.
    9. Marichal, Jean-Luc & Mathonet, Pierre, 2013. "Computing system signatures through reliability functions," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 710-717.
    10. He Yi & Lirong Cui, 2018. "A new computation method for signature: Markov process method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 410-426, August.
    11. Leila Mohammadi, 2017. "The joint signature of coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(7), pages 566-579, October.
    12. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    13. Erhard Cramer & Jorge Navarro, 2015. "Progressive Type‐II censoring and coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 512-530, September.
    14. Feng, Geng & Patelli, Edoardo & Beer, Michael & Coolen, Frank P.A., 2016. "Imprecise system reliability and component importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 116-125.
    15. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    16. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    17. Zhengcheng Zhang & N. Balakrishnan, 2016. "Representations of the inactivity time for coherent systems with heterogeneous components and some ordered properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 113-126, January.
    18. Bo H. Lindqvist & Francisco J. Samaniego, 2019. "Some new results on the preservation of the NBUE and NWUE aging classes under the formation of coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 430-438, August.
    19. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "Kumaraswamy Distribution and Random Extrema," The Open Statistics and Probability Journal, Bentham Open, vol. 9(1), pages 18-25, July.
    20. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:227:y:2013:i:5:p:513-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.