IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v66y2019i5p430-438.html
   My bibliography  Save this article

Some new results on the preservation of the NBUE and NWUE aging classes under the formation of coherent systems

Author

Listed:
  • Bo H. Lindqvist
  • Francisco J. Samaniego

Abstract

We consider the classical problem of whether certain classes of lifetime distributions are preserved under the formation of coherent systems. Under the assumption of independent and identically distributed (i.i.d.) component lifetimes, we consider the NBUE (new better than used in expectation) and NWUE (new worse than used in expectation) classes. First, a necessary condition for a coherent system to preserve the NBUE class is given. Sufficient conditions are then obtained for systems satisfying this necessary condition. The sufficient conditions are satisfied for a collection of systems which includes all parallel systems, but the collection is shown to be strictly larger. We also prove that no coherent system preserves the NWUE class. As byproducts of our study, we obtain the following results for the case of i.i.d. component lifetimes: (a) the DFR (decreasing failure rate) class is preserved by no coherent systems other than series systems, and (b) the IMRL (increasing mean residual life) class is not preserved by any coherent systems. Generalizations to the case of dependent component lifetimes are briefly discussed.

Suggested Citation

  • Bo H. Lindqvist & Francisco J. Samaniego, 2019. "Some new results on the preservation of the NBUE and NWUE aging classes under the formation of coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 430-438, August.
  • Handle: RePEc:wly:navres:v:66:y:2019:i:5:p:430-438
    DOI: 10.1002/nav.21849
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21849
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Navarro, Jorge, 2018. "Preservation of DMRL and IMRL aging classes under the formation of order statistics and coherent systems," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 264-268.
    2. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, February.
    3. Manuel Franco & M. Ruiz & José Ruiz, 2003. "A note on closure of the ILR and DLR classes under formation of coherent systems," Statistical Papers, Springer, vol. 44(2), pages 279-288, April.
    4. Nanda, Asok K. & Jain, Kanchan & Singh, Harshinder, 1998. "Preservation of some partial orderings under the formation of coherent systems," Statistics & Probability Letters, Elsevier, vol. 39(2), pages 123-131, August.
    5. Jorge Navarro & Yolanda del Águila & Miguel A. Sordo & Alfonso Suárez‐Llorens, 2014. "Preservation of reliability classes under the formation of coherent systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(4), pages 444-454, July.
    6. Abouammoh, A. & El-Neweihi, E., 1986. "Clusure of the NBUE and DMRL classes under formation of parallel systems," Statistics & Probability Letters, Elsevier, vol. 4(5), pages 223-225, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Li & Xiaohu Li, 2020. "Weak aging properties for coherent systems with statistically dependent component lifetimes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 559-572, October.
    2. Gámiz, Maria Luz & Nozal-Cañadas, Rafael & Raya-Miranda, Rocío, 2020. "TTT-SiZer: A graphic tool for aging trends recognition," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Li & Xiaohu Li, 2020. "Weak aging properties for coherent systems with statistically dependent component lifetimes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 559-572, October.
    2. Tomasz Rychlik & Magdalena Szymkowiak, 2025. "Preservation of Transform Order Properties of Component Lifetimes by System Lifetimes," Methodology and Computing in Applied Probability, Springer, vol. 27(2), pages 1-21, June.
    3. Nil Kamal Hazra & Asok K. Nanda & Moshe Shaked, 2014. "Some aging properties of parallel and series systems with a random number of components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(3), pages 238-243, April.
    4. Bera, Smaranika & Bhattacharyya, Dhrubasish & Khan, Ruhul Ali & Mitra, Murari, 2023. "Test for harmonic mean residual life function: A goodness of fit approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 58-70.
    5. Xiaohu Li & Ming J. Zuo, 2004. "Preservation of stochastic orders for random minima and maxima, with applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 332-344, April.
    6. Erhard Cramer & Jorge Navarro, 2015. "Progressive Type‐II censoring and coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 512-530, September.
    7. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Gaofeng Da & Lvyu Xia & Taizhong Hu, 2014. "On Computing Signatures of k-out-of-n Systems Consisting of Modules," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 223-233, March.
    9. Feng, Geng & Patelli, Edoardo & Beer, Michael & Coolen, Frank P.A., 2016. "Imprecise system reliability and component importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 116-125.
    10. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    11. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    12. Zhengcheng Zhang & N. Balakrishnan, 2016. "Representations of the inactivity time for coherent systems with heterogeneous components and some ordered properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 113-126, January.
    13. Frank P. A. Coolen & Tahani Coolen-Maturi & Ali M. Y. Mahnashi, 2024. "Nonparametric Predictive Inference for Discrete Lifetime Data," Mathematics, MDPI, vol. 12(22), pages 1-14, November.
    14. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "Kumaraswamy Distribution and Random Extrema," The Open Statistics and Probability Journal, Bentham Open, vol. 9(1), pages 18-25, July.
    15. Marichal, Jean-Luc & Mathonet, Pierre & Spizzichino, Fabio, 2015. "On modular decompositions of system signatures," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 19-32.
    16. Navarro, Jorge & Arriaza, Antonio & Suárez-Llorens, Alfonso, 2019. "Minimal repair of failed components in coherent systems," European Journal of Operational Research, Elsevier, vol. 279(3), pages 951-964.
    17. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    18. Nabakumar Jana & Samadrita Bera, 2024. "Estimation of multicomponent system reliability for inverse Weibull distribution using survival signature," Statistical Papers, Springer, vol. 65(8), pages 5077-5108, October.
    19. Marichal, Jean-Luc & Mathonet, Pierre, 2013. "On the extensions of Barlow–Proschan importance index and system signature to dependent lifetimes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 48-56.
    20. M. Burkschat & J. Navarro, 2014. "Asymptotic behavior of the hazard rate in systems based on sequential order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 965-994, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:66:y:2019:i:5:p:430-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.