IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v226y2012i2p156-168.html
   My bibliography  Save this article

Optimizing road milling and resurfacing actions

Author

Listed:
  • M Zouch
  • T G Yeung
  • B Castanier

Abstract

A condition-based maintenance optimization approach is developed for the road-cracking problem in order to derive optimal maintenance policies that minimize a total discounted maintenance cost. The approach is based on a Markov decision process that takes into account multiple actions with varying effects on future road performance. Maintaining the road consists of adding a new asphalt layer; however, as resurfacing actions are constrained by a maximum total road thickness, the maintenance decision is not only how thick a layer to apply, but also how much old road to remove. Each combination of these actions leads to different maintenance costs and different future degradation behaviours. The road state is modelled by a dependent bivariate deterioration variable (the longitudinal cracking percentage and the deterioration growth rate), for taking these different changes in the cracking patterns into account. Moreover, the sensitivity to cracking for existing roads can be reduced with the addition of new layers, and thus actions that can lead to states better than good-as-new have to be considered. A numerical analysis is provided to illustrate the benefits of the introduction of the deterioration speed in the decision framework, as well as the belief that initially building a road to its maximum thickness is not optimal. The trade-offs in the design decisions and the exploitation/maintenance costs are also explored.

Suggested Citation

  • M Zouch & T G Yeung & B Castanier, 2012. "Optimizing road milling and resurfacing actions," Journal of Risk and Reliability, , vol. 226(2), pages 156-168, April.
  • Handle: RePEc:sae:risrel:v:226:y:2012:i:2:p:156-168
    DOI: 10.1177/1748006X11416573
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X11416573
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X11416573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    2. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    3. Jiang, R., 2010. "Optimization of alarm threshold and sequential inspection scheme," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 208-215.
    4. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    5. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    6. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    7. Olde Keizer, Minou & Teunter, Ruud, 2014. "Opportunistic condition-based maintenance and aperiodic inspections for a two-unit series system," Research Report 14033-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    8. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    9. A Grall & M Fouladirad, 2008. "Maintenance decision rule with embedded online Bayesian change detection for gradually non-stationary deteriorating systems," Journal of Risk and Reliability, , vol. 222(3), pages 359-369, September.
    10. Fouladirad, Mitra & Grall, Antoine, 2011. "Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 611-618.
    11. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    12. Mitra Fouladirad & Antoine Grall, 2015. "Monitoring and condition-based maintenance with abrupt change in a system’s deterioration rate," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2183-2194, September.
    13. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    14. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2017. "Joint condition-based maintenance and inventory optimization for systems with multiple components," European Journal of Operational Research, Elsevier, vol. 257(1), pages 209-222.
    15. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    16. Huynh, K.T. & Barros, A. & Bérenguer, C. & Castro, I.T., 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 497-508.
    17. Estelle Deloux & Yann Dijoux & Mitra Fouladirad, 2012. "Generalization of the proportional hazards model for maintenance modelling and optimization," Journal of Risk and Reliability, , vol. 226(5), pages 439-447, October.
    18. Edith Grall-Maës, 2012. "Use of the Kolmogorov–Smirnov test for gamma process," Journal of Risk and Reliability, , vol. 226(6), pages 624-634, December.
    19. Lee, Juseong & Mitici, Mihaela, 2020. "An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:226:y:2012:i:2:p:156-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.