IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v44y2017i6p1077-1096.html
   My bibliography  Save this article

A comparison of nighttime lights data for urban energy research: Insights from scaling analysis in the US system of cities

Author

Listed:
  • Michail Fragkias
  • José Lobo
  • Karen C Seto

Abstract

Urban areas contribute to about 75% of global fossil fuel CO 2 emissions and are a primary driver of climate change. If greenhouse gas emissions for the top 20 emitting urban areas were aggregated into a one country, it would rank third behind China and the US. With urban areas forecasted to triple between 2010 and 2030 and urban population expected to increase by more than 2.5 billion, sustainable development will require a better understanding of how different types of urbanization affect energy use. However, there is a scarcity of data on energy use at the urban level that are available globally. Nighttime light satellite data have been shown to be related to energy use, but to date there has not been a systematic comparison of how well different sources of nighttime light data and their derived products can proxy electricity use. This paper fills this gap. First, we perform a comparative analysis of different types of nighttime light satellite data to proxy for electricity use for US cities. Second, we examine how the different types of nighttime light satellite data scale with the size of urban settlements and connect these findings to recent theoretical advances in scaling. We find that (1) all measures of nighttime light and urban electricity use in the US are strongly correlated and (2) different nighttime light-derived data can measure distinct urban energy characteristics such as energy infrastructure volume versus energy use. Our results do not show a clear best nighttime light proxy for total electricity consumption, despite of the use of higher spatial and temporal resolution data.

Suggested Citation

  • Michail Fragkias & José Lobo & Karen C Seto, 2017. "A comparison of nighttime lights data for urban energy research: Insights from scaling analysis in the US system of cities," Environment and Planning B, , vol. 44(6), pages 1077-1096, November.
  • Handle: RePEc:sae:envirb:v:44:y:2017:i:6:p:1077-1096
    DOI: 10.1177/0265813516658477
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0265813516658477
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0265813516658477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James E. Payne, 2010. "Survey of the international evidence on the causal relationship between energy consumption and growth," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 37(1), pages 53-95, January.
    2. Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    3. Meng, Lina & Graus, Wina & Worrell, Ernst & Huang, Bo, 2014. "Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery: Methodological challenges and a ," Energy, Elsevier, vol. 71(C), pages 468-478.
    4. Jones, Donald W., 1991. "How urbanization affects energy-use in developing countries," Energy Policy, Elsevier, vol. 19(7), pages 621-630, September.
    5. Raupach, M.R. & Rayner, P.J. & Paget, M., 2010. "Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions," Energy Policy, Elsevier, vol. 38(9), pages 4756-4764, September.
    6. Glaeser, Edward L. & Scheinkman, JoseA. & Shleifer, Andrei, 1995. "Economic growth in a cross-section of cities," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 117-143, August.
    7. Luís M A Bettencourt & José Lobo & Deborah Strumsky & Geoffrey B West, 2010. "Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    8. Brock, W A, 1999. "Scaling in Economics: A Reader's Guide," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 8(3), pages 409-446, September.
    9. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Falchetta & Michel Noussan, 2019. "Interannual Variation in Night-Time Light Radiance Predicts Changes in National Electricity Consumption Conditional on Income-Level and Region," Energies, MDPI, vol. 12(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    2. Tasnuva Mahjabin & Susana Garcia & Caitlin Grady & Alfonso Mejia, 2018. "Large cities get more for less: Water footprint efficiency across the US," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    3. Deborah Strumsky & Jose Lobo & Charlotta Mellander, 2021. "As different as night and day: Scaling analysis of Swedish urban areas and regional labor markets," Environment and Planning B, , vol. 48(2), pages 231-247, February.
    4. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    5. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    6. Brantley Liddle, 2013. "The Energy, Economic Growth, Urbanization Nexus Across Development: Evidence from Heterogeneous Panel Estimates Robust to Cross-Sectional Dependence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    8. Yajing Liu & Shuai Zhou & Ge Zhang, 2023. "Spatio-Temporal Dynamics and Driving Forces of Multi-Scale Emissions Based on Nighttime Light Data: A Case Study of the Pearl River Delta Urban Agglomeration," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    9. Kwok Tong Soo, 2018. "Innovation across cities," Journal of Regional Science, Wiley Blackwell, vol. 58(2), pages 295-314, March.
    10. J. Lobo & D. Strumsky & J. Rothwell, 2013. "Scaling of patenting with urban population size: evidence from global metropolitan areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 819-828, September.
    11. Jose Lobo & Luis MA Bettencourt & Michael E Smith & Scott Ortman, 2020. "Settlement scaling theory: Bridging the study of ancient and contemporary urban systems," Urban Studies, Urban Studies Journal Limited, vol. 57(4), pages 731-747, March.
    12. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    13. Önder Nomaler & Koen Frenken & Gaston Heimeriks, 2014. "On Scaling of Scientific Knowledge Production in U.S. Metropolitan Areas," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    14. Hu, Zhibin & Wu, Guangdong & Han, Yilong & Niu, Yanliang, 2023. "Unraveling the dynamic changes of high-speed rail network with urban development: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    15. Perry Sadorsky, 2014. "The Effect of Urbanization and Industrialization on Energy Use in Emerging Economies: Implications for Sustainable Development," American Journal of Economics and Sociology, Wiley Blackwell, vol. 73(2), pages 392-409, April.
    16. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    17. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    18. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    19. Cui, Yuanzheng & Zhang, Weishi & Wang, Can & Streets, David G. & Xu, Ying & Du, Mingxi & Lin, Jintai, 2019. "Spatiotemporal dynamics of CO2 emissions from central heating supply in the North China Plain over 2012–2016 due to natural gas usage," Applied Energy, Elsevier, vol. 241(C), pages 245-256.
    20. Niu, Honglei & Lekse, William, 2018. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:44:y:2017:i:6:p:1077-1096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.