IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v16y1989i1p41-50.html
   My bibliography  Save this article

An Algorithm for Facility Location in a Districted Region

Author

Listed:
  • C ReVelle

    (Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA)

  • D J Elzinga

    (Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA)

Abstract

The problem of facility siting in a districted region is discussed and a two-stage algorithm proposed. The first stage consists of solving a particular facility siting problem (for example, a p -median problem, or a maximal location covering problem) in each district for all possible allocations of facilities to a district with respect to the number of facilities allocated in each district. The second stage is the allocation of resources (facilities) among the districts. A greedy algorithm is proposed to solve the resource allocation problem with a criterion of minimizing the sum of weighted distances under convex conditions.

Suggested Citation

  • C ReVelle & D J Elzinga, 1989. "An Algorithm for Facility Location in a Districted Region," Environment and Planning B, , vol. 16(1), pages 41-50, March.
  • Handle: RePEc:sae:envirb:v:16:y:1989:i:1:p:41-50
    DOI: 10.1068/b160041
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b160041
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b160041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hugh Everett, 1963. "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, INFORMS, vol. 11(3), pages 399-417, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    2. Mustafa Doğru & A. Kok & G. Houtum, 2013. "Newsvendor characterizations for one-warehouse multi-retailer inventory systems with discrete demand under the balance assumption," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 541-559, September.
    3. D. Babusiaux, 1988. "Financing investment and calculations of profitability [Financement des investissements et calculs de rentabilité]," Working Papers hal-01534450, HAL.
    4. Arnaud Costinot & Andrés Rodríguez‐Clare & Iván Werning, 2020. "Micro to Macro: Optimal Trade Policy With Firm Heterogeneity," Econometrica, Econometric Society, vol. 88(6), pages 2739-2776, November.
    5. Hellwig, Klaus, 2007. "The creation of wealth," Finance Research Letters, Elsevier, vol. 4(3), pages 172-178, September.
    6. Alan Washburn, 2013. "OR Forum---Blotto Politics," Operations Research, INFORMS, vol. 61(3), pages 532-543, June.
    7. Koushik Ramakrishna & Moosa Sharafali & Yun Lim, 2015. "A two-item two-warehouse periodic review inventory model with transshipment," Annals of Operations Research, Springer, vol. 233(1), pages 365-381, October.
    8. Thanh Luong & Frederic H. Murphy & Reginald Sanders & Susan H. Holte & Peter Whitman, 1998. "Modeling the Impacts of the 1990 Clean Air Act Amendments," Interfaces, INFORMS, vol. 28(2), pages 1-15, April.
    9. Kevin Glazebrook & Alan Washburn, 2004. "Shoot-Look-Shoot: A Review and Extension," Operations Research, INFORMS, vol. 52(3), pages 454-463, June.
    10. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    11. Larsson, Torbjörn & Marklund, Johan & Olsson, Caroline & Patriksson, Michael, 2008. "Convergent Lagrangian heuristics for nonlinear minimum cost network flows," European Journal of Operational Research, Elsevier, vol. 189(2), pages 324-346, September.
    12. Richárd Molnár-Szipai & Anita Varga, 2019. "Integrating combinatorial algorithms into a linear programming solver," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 475-482, June.
    13. Demidova, Svetlana, 2017. "Trade policies, firm heterogeneity, and variable markups," Journal of International Economics, Elsevier, vol. 108(C), pages 260-273.
    14. Steiner, Erich & McKinnon, Ken, 2000. "Dynamic programming using the Fritz-John conditions," European Journal of Operational Research, Elsevier, vol. 123(1), pages 145-153, May.
    15. Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.
    16. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    17. Zhang, Zijun & Kusiak, Andrew & Zeng, Yaohui & Wei, Xiupeng, 2016. "Modeling and optimization of a wastewater pumping system with data-mining methods," Applied Energy, Elsevier, vol. 164(C), pages 303-311.
    18. Moehring, Rolf & Uetz, Marc & Stork, Frederik & Schulz, Andreas S., 2002. "Solving Project Scheduling Problems by Minimum Cut," Working papers 4231-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    20. Monique Guignard, 2003. "Lagrangean relaxation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 151-200, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:16:y:1989:i:1:p:41-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.