IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v28y2017i4p425-436.html
   My bibliography  Save this article

Production logistics and participation of biogas in obtaining primary energy in Poland

Author

Listed:
  • Justyna KwaÅ›ny
  • Wojciech Balcerzak

Abstract

One of the primary wastes generated in wastewater treatment process is the sewage sludge. Sewage sludges are a substrate of methane fermentation process, from which biogas is obtained. Biogas is a renewable energy source obtained by processing the biomass. In accordance with European Union directives, we should strive to increase biogas production and its share in primary energy acquisition. In this article, the characteristics of biogas from sewage sludges, in terms of the chemical composition of the gas mixture, were noted and its participation in obtaining energy from renewable sources and in total primary energy in the case of Poland was analyzed. Moreover, logistics biogas from sewage sludges production issues, which relate to, among others, location production plants, sourcing activities, as well as feedstock management and digestate waste management were discussed.

Suggested Citation

  • Justyna KwaÅ›ny & Wojciech Balcerzak, 2017. "Production logistics and participation of biogas in obtaining primary energy in Poland," Energy & Environment, , vol. 28(4), pages 425-436, June.
  • Handle: RePEc:sae:engenv:v:28:y:2017:i:4:p:425-436
    DOI: 10.1177/0958305X17695277
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X17695277
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X17695277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    2. Rey, M.D. & Font, R. & Aracil, I., 2013. "Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique," Energy, Elsevier, vol. 63(C), pages 161-167.
    3. Cutz, L. & Haro, P. & Santana, D. & Johnsson, F., 2016. "Assessment of biomass energy sources and technologies: The case of Central America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1411-1431.
    4. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    2. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    4. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Gao, Yuchen & Jiang, Jianguo & Meng, Yuan & Aihemaiti, Aikelaimu & Ju, Tongyao & Chen, Xuejing & Yan, Feng, 2020. "A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming," Renewable Energy, Elsevier, vol. 149(C), pages 786-793.
    6. Alessandro Suardi & Walter Stefanoni & Vincenzo Alfano & Simone Bergonzoli & Luigi Pari, 2020. "Equipping a Combine Harvester with Turbine Technology Increases the Recovery of Residual Biomass from Cereal Crops via the Collection of Chaff," Energies, MDPI, vol. 13(7), pages 1-14, March.
    7. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    8. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Kozarac, Darko & Taritas, Ivan & Vuilleumier, David & Saxena, Samveg & Dibble, Robert W., 2016. "Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine," Energy, Elsevier, vol. 115(P1), pages 180-193.
    10. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    11. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    12. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    15. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    16. Seman, S.Z.A. & Idris, I. & Abdullah, A. & Shamsudin, I.K. & Othman, M.R., 2019. "Optimizing purity and recovery of biogas methane enrichment process in a closed landfill," Renewable Energy, Elsevier, vol. 131(C), pages 1117-1127.
    17. Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
    18. Nandimandalam, Hariteja & Gude, Veera Gnaneswar, 2022. "Renewable wood residue sources as potential alternative for fossil fuel dominated electricity mix for regions in Mississippi: A techno-economic analysis," Renewable Energy, Elsevier, vol. 200(C), pages 1105-1119.
    19. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    20. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:28:y:2017:i:4:p:425-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.