IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v15y2004i1p1-10.html
   My bibliography  Save this article

Using Historical Climate Data to Evaluate Climate Trends: Issues of Statistical Inference

Author

Listed:
  • Craig Loehle

    (National Council for Air and Stream Improvement, Inc. (NCASI), 552 S. Washington Street, Suite 224, Naperville, Illinois 60540 USA)

Abstract

A strong case for global warming has been made based on reconstructed global climate histories. However, certain unique features of paleoclimate data make statistical inference problematic. Historical climate data have dating error of such a magnitude that combined series will really represent very long-term averages, which will flatten peaks in the reconstructed series. Similarly, dating error will prevent peaks (e.g., of the Medieval Warm Period) from multiple series from lining up precisely. Meta-analysis is proposed as a tool for dealing with dating uncertainty. While it is generally assumed that a proper null model for twentieth-century climate is no trend, it is shown that the proper prior expectation based on past climate is that climate trends over a century period are likely. Climate data must be detrended before analysis to take this prior expectation into account.

Suggested Citation

  • Craig Loehle, 2004. "Using Historical Climate Data to Evaluate Climate Trends: Issues of Statistical Inference," Energy & Environment, , vol. 15(1), pages 1-10, January.
  • Handle: RePEc:sae:engenv:v:15:y:2004:i:1:p:1-10
    DOI: 10.1260/095830504322986457
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/095830504322986457
    Download Restriction: no

    File URL: https://libkey.io/10.1260/095830504322986457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael E. Mann & Raymond S. Bradley & Malcolm K. Hughes, 1998. "Global-scale temperature patterns and climate forcing over the past six centuries," Nature, Nature, vol. 392(6678), pages 779-787, April.
    2. Paul A. Baker & Catherine A. Rigsby & Geoffrey O. Seltzer & Sherilyn C. Fritz & Tim K. Lowenstein & Niklas P. Bacher & Carlos Veliz, 2001. "Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano," Nature, Nature, vol. 409(6821), pages 698-701, February.
    3. A. W. Rempel & E. D. Waddington & J. S. Wettlaufer & M. G. Worster, 2001. "Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion," Nature, Nature, vol. 411(6837), pages 568-571, May.
    4. Tomasz Goslar & Maurice Arnold & Nadine Tisnerat-Laborde & Justyna Czernik & Kazimierz Wiȩckowski, 2000. "Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes," Nature, Nature, vol. 403(6772), pages 877-880, February.
    5. J. R. Petit & J. Jouzel & D. Raynaud & N. I. Barkov & J.-M. Barnola & I. Basile & M. Bender & J. Chappellaz & M. Davis & G. Delaygue & M. Delmotte & V. M. Kotlyakov & M. Legrand & V. Y. Lipenkov & C. , 1999. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica," Nature, Nature, vol. 399(6735), pages 429-436, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Terence C. Mills, 2004. "Time Series Modelling of Trends in Northern Hemispheric Average Temperature Series," Energy & Environment, , vol. 15(5), pages 743-753, September.
    3. Fabien Candau & Tchapo Gbandi, 2023. "When Climate Change Determines International Agreements: Evidence from Water Treaties," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 587-614, August.
    4. Puetz, Stephen J. & Prokoph, Andreas & Borchardt, Glenn & Mason, Edward W., 2014. "Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 55-75.
    5. Qing Ji & Xiaoping Pang & Xi Zhao, 2014. "A bibliometric analysis of research on Antarctica during 1993–2012," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1925-1939, December.
    6. Fenske, James & Kala, Namrata, 2017. "1807: Economic shocks, conflict and the slave trade," Journal of Development Economics, Elsevier, vol. 126(C), pages 66-76.
    7. Pierre Perron & Francisco Estrada & Carlos Gay-García & Benjamín Martínez-López, 2011. "A time-series analysis of the 20th century climate simulations produced for the IPCC’s AR4," Boston University - Department of Economics - Working Papers Series WP2011-051, Boston University - Department of Economics.
    8. Bruce R. Conard, 2013. "Some Challenges to Sustainability," Sustainability, MDPI, vol. 5(8), pages 1-14, August.
    9. Chavas, Jean-Paul & Grainger, Corbett & Hudson, Nicholas, 2016. "How should economists model climate? Tipping points and nonlinear dynamics of carbon dioxide concentrations," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 56-65.
    10. Zbigniew Jaworowski, 2005. "Nature Rules the Climate," Energy & Environment, , vol. 16(1), pages 131-147, January.
    11. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    12. Strauch, Gerhard (Ed.) & Weise, Stephan M. (Ed.), 2005. "European Society for Isotope Research (ESIR): VIII Isotope Workshop, Extended Abstract Volume. June 25 to 30, 2005, Leipzig, Germany," UFZ Reports 02/2005, Helmholtz Centre for Environmental Research (UFZ).
    13. Marsz Andrzej A. & Styszyńska Anna & Sobkowiak Leszek & Wrzesiński Dariusz, 2022. "Causes and Course of Climate Change and Its Hydrological Consequences in the Greater Poland Region in 1951–2020," Quaestiones Geographicae, Sciendo, vol. 41(3), pages 183-206, September.
    14. Liang Yi & Hongjun Yu & Junyi Ge & Zhongping Lai & Xingyong Xu & Li Qin & Shuzhen Peng, 2012. "Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records," Climatic Change, Springer, vol. 110(1), pages 469-498, January.
    15. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    16. Mabhaudhi, T. & Modi, A.T. & Beletse, Y.G., 2013. "Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter," Agricultural Water Management, Elsevier, vol. 121(C), pages 102-112.
    17. Rakhyun Kim & Brendan Mackey, 2014. "International environmental law as a complex adaptive system," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 14(1), pages 5-24, March.
    18. Gadea Rivas, María Dolores & Gonzalo, Jesús & Ramos, Andrey, 2023. "Trends in temperature data: micro-foundations of their nature," UC3M Working papers. Economics 39045, Universidad Carlos III de Madrid. Departamento de Economía.
    19. Stephen McIntyre & Ross McKitrick, 2005. "The M&M Critique of the MBH98 Northern Hemisphere Climate Index: Update and Implications," Energy & Environment, , vol. 16(1), pages 69-100, January.
    20. Dan Pangburn, 2015. "Influence of Carbon Dioxide on Average Global Temperature during the Phanerozoic Eon," Energy & Environment, , vol. 26(5), pages 841-845, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:15:y:2004:i:1:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.