IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A new approach to construction of objective priors: Hellinger information

Listed author(s):
  • Shemyakin, Arkady

    ()

    (University of St. Thomas, St. Paul, USA)

Registered author(s):

    Non-informative priors play crucial role in objective Bayesian analysis. Most popular ways of construction of non-informative priors are provided by the Jeffreys rule, matching probability principle, and reference prior approach. An alternative construction of non-informative priors is suggested based on the concept of Hellinger information related to Hellinger distance. Under certain regularity conditions, limit behavior of the Hellinger distance as the difference in the parameter values goes down to zero is closely related to Fisher information. In this case our approach generalizes the Jeffreys rule. However, what is more interesting, Hellinger information can be also used to describe information properties of the parametric set in non-regular situations, when Fisher information does not exist. Non-informative priors based on Hellinger information are studied for the non-regular class of distributions defined by Ghosal and Samanta and for some interesting examples outside of this class.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://pe.cemi.rssi.ru/pe_2012_4_124-137.pdf
    File Function: Full text
    Download Restriction: no

    Article provided by Publishing House "SINERGIA PRESS" in its journal Applied Econometrics.

    Volume (Year): 28 (2012)
    Issue (Month): 4 ()
    Pages: 124-137

    as
    in new window

    Handle: RePEc:ris:apltrx:0199
    Contact details of provider: Web page: http://appliedeconometrics.cemi.rssi.ru/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. S. Ghosal, 1997. "Reference priors in multiparameter nonregular cases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 159-186, June.
    2. Ghosal Subhashis & Samanta Tapas, 1997. "Expansion Of Bayes Risk For Entropy Loss And Reference Prior In Nonregular Cases," Statistics & Risk Modeling, De Gruyter, vol. 15(2), pages 129-140, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0199. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anatoly Peresetsky)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.