IDEAS home Printed from https://ideas.repec.org/a/pop/procee/v8y2020p383-392.html
   My bibliography  Save this article

The future of bioenergy as a component of smart cities

Author

Listed:
  • Rafaela MATEI

    (BEIA Consult international, Bucharest, Romania)

  • George SUCIU

    (BEIA Consult international, Bucharest, Romania)

Abstract

A thematic in vogue nowadays is bioenergy evolution as a solution for sustainable development, certain global conflicts, etc. Undeniably, bioenergy represents future energy as a component of smart city development. The main problem today is that resources used to obtain energy are limited, non-renewable and unequal distributed on the planet but the energy consumption is growing. Humanity has to find other sources of energy besides oil, coals am gas. There are two directions: nuclear energy and bioenergy. The second option is preferred to be developed for security reasons. The problem in obtaining bioenergy is that storage methods are not efficient for the moment and its production is not equally distributed for the entire period of the year in most states. The purpose of this article is to analyze the future perspective about the strategic resources in the global context where the most important factors are: political environment, usability, price vectors, technologies, and sustainable development.

Suggested Citation

  • Rafaela MATEI & George SUCIU, 2020. "The future of bioenergy as a component of smart cities," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, vol. 8, pages 383-392, November.
  • Handle: RePEc:pop:procee:v:8:y:2020:p:383-392
    as

    Download full text from publisher

    File URL: https://www.scrd.eu/index.php/scic/article/view/351/316
    Download Restriction: no

    File URL: https://www.scrd.eu/index.php/scic/article/view/351
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    2. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    3. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    5. Edoardo De Din & Fabian Bigalke & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "Analysis of a Multi-Timescale Framework for the Voltage Control of Active Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-23, April.
    6. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    7. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    8. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    9. Hector Beltran & Pablo Ayuso & Emilio Pérez, 2020. "Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage," Energies, MDPI, vol. 13(3), pages 1-18, January.
    10. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    11. Yunlong Han & Conghui Li & Linfeng Zheng & Gang Lei & Li Li, 2023. "Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network," Energies, MDPI, vol. 16(17), pages 1-16, August.
    12. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
    13. Lam, Dylon Hao Cheng & Lim, Yun Seng & Wong, Jianhui & Allahham, Adib & Patsios, Charalampos, 2023. "A novel characteristic-based degradation model of Li-ion batteries for maximum financial benefits of energy storage system during peak demand reductions," Applied Energy, Elsevier, vol. 343(C).
    14. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    15. Minhwan Seo & Taedong Goh & Minjun Park & Sang Woo Kim, 2018. "Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell," Energies, MDPI, vol. 11(7), pages 1-18, June.
    16. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    17. Roberto Gómez-Calvet & José M. Martínez-Duart, 2019. "On the Assessment of the 2030 Power Sector Transition in Spain," Energies, MDPI, vol. 12(7), pages 1-17, April.
    18. Arjuna Nebel & Julián Cantor & Sherif Salim & Amro Salih & Dixit Patel, 2022. "The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO 2 Emission Restrictions," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    19. Gupta, Ruchi & Pena-Bello, Alejandro & Streicher, Kai Nino & Roduner, Cattia & Farhat, Yamshid & Thöni, David & Patel, Martin Kumar & Parra, David, 2021. "Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating," Applied Energy, Elsevier, vol. 287(C).
    20. Md. Mahamudul Hasan & Boris Berseneff & Tim Meulenbroeks & Igor Cantero & Sajib Chakraborty & Thomas Geury & Omar Hegazy, 2022. "A Multi-Objective Co-Design Optimization Framework for Grid-Connected Hybrid Battery Energy Storage Systems: Optimal Sizing and Selection of Technology," Energies, MDPI, vol. 15(15), pages 1-21, July.

    More about this item

    Keywords

    smart city; bioenergy; strategic resources;
    All these keywords.

    JEL classification:

    • O35 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Social Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pop:procee:v:8:y:2020:p:383-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin Vrabie (email available below). General contact details of provider: https://edirc.repec.org/data/fasnsro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.