IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0340058.html

A bi-objective robust optimization model for location-transportation under uncertainty with psychological costs

Author

Listed:
  • Tingting Zhang
  • Yanqiu Liu
  • Zhongqi Peng

Abstract

After an earthquake, it is often difficult to obtain accurate information on the number of casualties in the disaster area, which brings significant uncertainty to emergency rescue logistics. In addition to physical injuries, victims often suffer from severe psychological trauma, further hindering the effectiveness of rescue efforts. As such, incorporating the psychological condition of casualties is essential to developing an effective rescue strategy under uncertainty in casualty numbers. Building on this, this paper proposes a bi-objective robust optimization model to determine the optimal locations of medical facilities and the transportation plans for the casualties within a three-tier rescue chain comprising disaster areas, temporary hospitals, and comprehensive hospitals. The Injury Severity Score (ISS) is employed to classify casualties into three categories and to give the dynamic evolution of the deterioration rate of casualties over time. The model also considers factors such as limited medical resources, casualty classification, uncertainty in casualty numbers, and psychological conditions. The objective is to minimize the total ISS and psychological cost. We use the robust optimization method to derive the robust counterpart model of the proposed stochastic model. The bi-objective model is solved using the ε−constraint method. Extensive computational experiments and sensitivity analyses based on the Yushu earthquake were conducted, and the main findings are as follows. The greater the uncertainty in casualty numbers, the more significant its impact on the total ISS. While greater attention to the psychological condition of casualties can improve humanitarian care, it may reduce rescue efficiency, and decision-makers need to make a trade-off based on actual preferences. The treatment needs of serious casualties deserve greater attention than those of moderate or mild ones. Moreover, expanding the capacity of temporary hospitals is more effective in improving rescue efficiency than comprehensive hospitals. Finally, the robust optimization model performs better than the deterministic model when expanding the problem size.

Suggested Citation

  • Tingting Zhang & Yanqiu Liu & Zhongqi Peng, 2026. "A bi-objective robust optimization model for location-transportation under uncertainty with psychological costs," PLOS ONE, Public Library of Science, vol. 21(1), pages 1-24, January.
  • Handle: RePEc:plo:pone00:0340058
    DOI: 10.1371/journal.pone.0340058
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0340058
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0340058&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0340058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuyu Wang & Xuefei Ge & Yan Li & Jingjing Zheng & Weichen Zheng, 2023. "Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    2. Shaoqing Geng & Hanping Hou & Zhou Zhou, 2024. "A dynamic multi-objective model for emergency shelter relief system design integrating the supply and demand sides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2379-2402, February.
    3. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Fu, Hao & Lam, William H.K. & Ma, Wei & Shi, Yuxin & Jiang, Rui & Sun, Huijun & Gao, Ziyou, 2025. "Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    5. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    6. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    7. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    8. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
    9. Sharbaf, Maedeh & Bélanger, Valérie & Cherkesly, Marilène & Rancourt, Marie-Ève & Toglia, Giovanni Michele, 2025. "Risk-based shelter network design in flood-prone areas: An application to Haiti," Omega, Elsevier, vol. 131(C).
    10. Feiyue Wang & Ziling Xie & Hui Liu & Zhongwei Pei & Dingli Liu, 2022. "Multiobjective Emergency Resource Allocation under the Natural Disaster Chain with Path Planning," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    11. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    12. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    13. Yang, Wenjie & Caunhye, Aakil M. & Zhuo, Maolin & Wang, Qingyi, 2024. "Integrated planning of emergency supply pre-positioning and victim evacuation," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    14. Lee, Yu-Ching & Chen, Yu-Shih & Chen, Albert Y., 2022. "Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 1-23.
    15. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    16. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    17. Shengjie Long & Dezhi Zhang & Shuangyan Li & Shuanglin Li, 2023. "Two-Stage Multi-Objective Stochastic Model on Patient Transfer and Relief Distribution in Lockdown Area of COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    18. Sheu, Jiuh-Biing, 2024. "Mass evacuation planning for disasters management: A household evacuation route choice behavior analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    19. Pan, Yuqing & Cheng, T.C.E. & He, Yuxuan & Ng, Chi To & Sethi, Suresh P., 2022. "Foresighted medical resources allocation during an epidemic outbreak," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Ming Zhang & Yu Zhang & Zhifeng Qiu & Hanlin Wu, 2019. "Two-Stage Covering Location Model for Air–Ground Medical Rescue System," Sustainability, MDPI, vol. 11(12), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0340058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.