IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0330187.html
   My bibliography  Save this article

DNTB: Dual-branch network model based on transformer and Bi-LSTM for energy consumption prediction in building chiller systems

Author

Listed:
  • Andong Chen
  • Mingtao Wu
  • Cheng Chen
  • Chen Chen
  • Yong Huang
  • Xiaoyi Lv

Abstract

Accurate prediction of chiller energy consumption is crucial for reducing building energy consumption. In this study, an innovative dual-branch network architecture DNTB (A Dual-Branch Network Model Based on Transformer and Bi-LSTM for Energy Consumption Prediction in Building Chiller Systems) was proposed to address the problems of insufficient long-term dependency modeling and noise sensitivity in current prediction models. The research goal is to develop a prediction model that can simultaneously process temporal features and global dependencies. The basic principle is to utilize the complementary characteristics of Transformer and Bi-LSTM. Transformer is sensitive to data noise and Bi-LSTM is weak in capturing long-term sequence information. It can better capture the temporal information of chiller energy consumption data and well model the relationship between variables such as chilled water, building load, chiller temperature, humidity, dew point and chiller energy consumption. In order to prove the effectiveness and generalization ability of the model, experiments were carried out on long-term and short-term tasks of chiller energy consumption prediction. The long-term prediction results had MSE (mean absolute error) of 0.0051, RMSE (mean square error) of 0.0605, and R2 (coefficient of determination) of 0.8031. The short-term prediction results had MSE of 0.0080, RMSE of 0.0738, and R2 of 0.6717. The experimental results indicate that DNTB performs excellently in both long-term and short-term chiller energy consumption prediction, making it a robust framework for chiller energy consumption prediction. The introduction of DNTB enriches the diversity of empirical model algorithms.

Suggested Citation

  • Andong Chen & Mingtao Wu & Cheng Chen & Chen Chen & Yong Huang & Xiaoyi Lv, 2025. "DNTB: Dual-branch network model based on transformer and Bi-LSTM for energy consumption prediction in building chiller systems," PLOS ONE, Public Library of Science, vol. 20(10), pages 1-18, October.
  • Handle: RePEc:plo:pone00:0330187
    DOI: 10.1371/journal.pone.0330187
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330187
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0330187&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0330187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    2. Alexey Mikhaylov & Nikita Moiseev & Kirill Aleshin & Thomas Burkhardt, 2020. "Global climate change and greenhouse effect," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 2897-2913, June.
    3. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    2. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    3. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    4. Wang, Yunhui & Wu, Peng & Huang, Lei & Song, Yongchen & Li, Yanghui, 2025. "Stress-induced permeability evolution mechanism of hydrate-bearing sediments from pore-scale perspective," Energy, Elsevier, vol. 319(C).
    5. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    6. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    8. Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
    9. Serra, Adrià & Ortiz, Alberto & Cortés, Pau Joan & Canals, Vincent, 2025. "Explainable district heating load forecasting by means of a reservoir computing deep learning architecture," Energy, Elsevier, vol. 318(C).
    10. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    11. Yang, Xiaoxi & Zhang, Dansha & Masron, Tajul Ariffin, 2024. "The impact of smart city construction on achieving peak carbon neutrality: Evidence from 31 provinces in China," Land Use Policy, Elsevier, vol. 147(C).
    12. Qianwen Li & Yongkang He & Kaixuan Zhao & Jiangtao Ji & Hongzhen Li & Jeffrey M. Bewley, 2024. "Development and Testing of NDIR-Based Rapid Greenhouse Gas Detection Device for Dairy Farms," Sustainability, MDPI, vol. 16(5), pages 1-22, March.
    13. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
    14. Song, Jiancai & Wang, Kangning & Bian, Tianxiang & Li, Wen & Dong, Qianxing & Chen, Lei & Xue, Guixiang & Wu, Xiangdong, 2025. "A novel heat load prediction algorithm based on fuzzy C-mean clustering and mixed positional encoding informer," Applied Energy, Elsevier, vol. 388(C).
    15. Vanessa Zawodnik & Florian Christian Schwaiger & Christoph Sorger & Thomas Kienberger, 2024. "Tackling Uncertainty: Forecasting the Energy Consumption and Demand of an Electric Arc Furnace with Limited Knowledge on Process Parameters," Energies, MDPI, vol. 17(6), pages 1-19, March.
    16. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    17. Elamin, Niematallah & Fukushige, Mototsugu, 2018. "Modeling and forecasting hourly electricity demand by SARIMAX with interactions," Energy, Elsevier, vol. 165(PB), pages 257-268.
    18. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P. & Bouzerdoum, A., 2017. "Short-term electricity demand forecasting using autoregressive based time varying model incorporating representative data adjustment," Applied Energy, Elsevier, vol. 205(C), pages 790-801.
    19. Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
    20. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2025. "Quantifying dynamic solar gains in buildings: Measurement, simulation and data-driven modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.