IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0327316.html
   My bibliography  Save this article

Characterization and estimation of heterogeneous spatial autocorrelation in spatial autoregressive models

Author

Listed:
  • Jing Zhao
  • Yue Pu

Abstract

Spatial Autoregressive (SAR) models are widely used to analyze interactions among regions. However, the traditional model assumes a constant spatial autocorrelation coefficient, which fails to effectively capture spatial heterogeneity. To address this issue, we propose proposes a novel Spatial Single-Index Varying Coefficient Autoregressive (SSIVCAR) model. By introducing a single-index varying coefficient function, this model allows the spatial correlation strength to dynamically change with the characteristics of spatial units, thereby more accurately capturing spatial dependence relationships. To estimate the model parameters, we combine spline methods with two-stage least squares, and we assess the model’s performance under finite sample conditions under Monte Carlo simulations. The simulation results show that the proposed model performs significantly better in capturing spatial heterogeneity and improving estimation accuracy. Finally, the model is applied to analyze the impact of digital economy development on environmental quality, and find that it has significant heterogeneous effects across different regions. This study provides a new framework for analyzing complex spatial dependence structures and offers valuable insights for regional governance policies.

Suggested Citation

  • Jing Zhao & Yue Pu, 2025. "Characterization and estimation of heterogeneous spatial autocorrelation in spatial autoregressive models," PLOS ONE, Public Library of Science, vol. 20(7), pages 1-33, July.
  • Handle: RePEc:plo:pone00:0327316
    DOI: 10.1371/journal.pone.0327316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327316
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0327316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0327316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    2. David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
    3. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    4. Kubiszewski, Ida & Jarvis, Diane & Zakariyya, Nabeeh, 2019. "Spatial variations in contributors to life satisfaction: An Australian case study," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    5. David C. Wheeler & Antonio Páez & Jamie Spinney & Lance A. Waller, 2014. "A Bayesian approach to hedonic price analysis," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 663-683, August.
    6. repec:rre:publsh:v:51:y:2021:i:2 is not listed on IDEAS
    7. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
    8. Declan Curran, 2012. "British regional growth and sectoral trends: global and local spatial econometric approaches," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2187-2201, June.
    9. Jeffrey W. Doser & Andrew O. Finley & Sarah P. Saunders & Marc Kéry & Aaron S. Weed & Elise F. Zipkin, 2025. "Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 146-171, March.
    10. M. Bárcena & P. Menéndez & M. Palacios & F. Tusell, 2014. "Alleviating the effect of collinearity in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 16(4), pages 441-466, October.
    11. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    12. John I. Carruthers & David E. Clark, 2010. "Valuing Environmental Quality: A Space‐Based Strategy," Journal of Regional Science, Wiley Blackwell, vol. 50(4), pages 801-832, October.
    13. Saravanan Veluswami Subramanian & Min Jung Cho & Fotima Mukhitdinova, 2018. "Health Risk in Urbanizing Regions: Examining the Nexus of Infrastructure, Hygiene and Health in Tashkent Province, Uzbekistan," IJERPH, MDPI, vol. 15(11), pages 1-16, November.
    14. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    15. Paolo Postiglione & M. Andreano & Roberto Benedetti, 2013. "Using Constrained Optimization for the Identification of Convergence Clubs," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 151-174, August.
    16. Shiliang Su & Yue Gong & Bingqing Tan & Jianhua Pi & Min Weng & Zhongliang Cai, 2017. "Area Social Deprivation and Public Health: Analyzing the Spatial Non-stationary Associations Using Geographically Weighed Regression," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 819-832, September.
    17. Davood Poursina & B. Wade Brorsen, 2025. "Site-specific nitrogen recommendation: fast, accurate, and feasible Bayesian kriging," Computational Statistics, Springer, vol. 40(2), pages 1053-1069, February.
    18. Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
    19. David Wheeler & Lance Waller, 2009. "Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests," Journal of Geographical Systems, Springer, vol. 11(1), pages 1-22, March.
    20. Paolo Postiglione & Alfredo Cartone & M. Simona Andreano & Roberto Benedetti, 2023. "Constrained optimization for addressing spatial heterogeneity in principal component analysis: an application to composite indicators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1539-1561, December.
    21. M. Simona Andreano & Roberto Benedetti & Andrea Mazzitelli & Federica Piersimoni, 2018. "Spatial autocorrelation and clusters in modelling corporate bankruptcy of manufacturing firms," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(4), pages 475-491, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.