Author
Listed:
- Liming Wei
- Fengyang Zhang
Abstract
To accelerate energy efficiency improvement and green transition in industrial parks while addressing energy utilization and carbon reduction requirements, this study proposes a low-carbon economic dispatch model for integrated energy systems (IES) based on an enhanced multi-objective artificial hummingbird algorithm (MOAHA). The main contributions are threefold: First, we establish an optimized dispatch model incorporating combined cooling, heating and power (CCHP) systems, a refined two-stage power-to-gas (P2G) conversion process, and carbon capture technologies. Second, a stepwise carbon trading mechanism is introduced to further reduce carbon emissions from the IES. Third, a multi-strategy enhanced MOAHA is developed through three key improvements: 1) Logistic-sine fused chaotic mapping for population initialization to enhance distribution uniformity and solution quality; 2) Elite opposition-based learning and adaptive spiral migration foraging mechanisms to optimize individual positions and population diversity; 3) Simplex method integration to strengthen local search capabilities and optimization precision. Comprehensive case studies demonstrate the model’s effectiveness, achieving an 82.9% reduction in carbon emissions and 17.3% decrease in operational costs compared to conventional approaches. The proposed framework provides a technically viable solution for sustainable energy management in industrial parks, effectively balancing economic and environmental objectives.
Suggested Citation
Liming Wei & Fengyang Zhang, 2025.
"Research on optimal scheduling of integrated energy system based on improved multi-objective artificial hummingbird algorithm,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-30, June.
Handle:
RePEc:plo:pone00:0325310
DOI: 10.1371/journal.pone.0325310
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0325310. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.