Author
Listed:
- Hanbo Cui
- Xintong Jiang
- Zongyun Mo
- Shenghao Guo
- Changshuang Zhao
- Weitan Zhuang
- Fei Guo
Abstract
Fractures are key geological features in hot dry rock structures and fulfill a decisive role in determining productivity and reservoir stability. Adopting the Xudong fault zone in the Songliao Basin as the research object, a multifracture heat extraction model was constructed using COMSOL software to systematically analyze productivity and various field under different numbers and locations of horizontal and vertical fractures. Moreover, the influences of vertical fracture connectivity and the characteristics of seepage and heat transfer between the upper and lower rock layers on the temperature field were evaluated. The findings are as follows: (1) The production flow obtained with nine horizontal fractures is 2.25 to 2.28 times that obtained with four horizontal fractures. Increasing the number of horizontal fractures also increases the production temperature and heat extraction efficiency at the early stages of heat extraction but reduces productivity at the later stages and adversely affects reservoir stability. After 30 years of heat extraction, the production temperature, average subsidence, maximum subsidence, and average in situ stress obtained with nine horizontal fractures are 79.38% and 1.87, 1.61, and 1.45 times, respectively, those obtained with four horizontal fractures. (2) The influence of the number of vertical fractures on the geothermal reservoir characteristics is similar to but slightly smaller than that of horizontal fractures. However, the influences of vertical fractures on the production flow at the early stages and the maximum reservoir temperature at the later stages are opposite to those of horizontal fractures. When vertical fractures are located close to the injection well, productivity is low at the early stages but high at the later stages. The maximum subsidence, average in situ stress, and maximum in situ stress slightly increase, whereas the average subsidence decreases. (3) After 30 years of heat extraction, the average reservoir temperature is highest when seepage and heat transfer between the upper and lower rock layers occur and when vertical fractures do not penetrate the reservoir. When these conditions are reversed, the average temperature is lowest, with the former approximately 0.42°C higher than the latter. The findings of this study provide a reference for the construction of reservoir fracture systems.
Suggested Citation
Hanbo Cui & Xintong Jiang & Zongyun Mo & Shenghao Guo & Changshuang Zhao & Weitan Zhuang & Fei Guo, 2025.
"Numerical simulation study on multifield coupling of enhanced geothermal systems under different fracture characteristics,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-27, June.
Handle:
RePEc:plo:pone00:0319376
DOI: 10.1371/journal.pone.0319376
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319376. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.