IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0316136.html
   My bibliography  Save this article

Optimizing Bi-LSTM networks for improved lung cancer detection accuracy

Author

Listed:
  • Su Diao
  • Yajie Wan
  • Danyi Huang
  • Shijia Huang
  • Touseef Sadiq
  • Mohammad Shahbaz Khan
  • Lal Hussain
  • Badr S Alkahtani
  • Tehseen Mazhar

Abstract

Lung cancer remains a leading cause of cancer-related deaths worldwide, with low survival rates often attributed to late-stage diagnosis. To address this critical health challenge, researchers have developed computer-aided diagnosis (CAD) systems that rely on feature extraction from medical images. However, accurately identifying the most informative image features for lung cancer detection remains a significant challenge. This study aimed to compare the effectiveness of both hand-crafted and deep learning-based approaches for lung cancer diagnosis. We employed traditional hand-crafted features, such as Gray Level Co-occurrence Matrix (GLCM) features, in conjunction with traditional machine learning algorithms. To explore the potential of deep learning, we also optimized and implemented a Bidirectional Long Short-Term Memory (Bi-LSTM) network for lung cancer detection. The results revealed that the highest performance using hand-crafted features was achieved by extracting GLCM features and utilizing Support Vector Machine (SVM) with different kernels, reaching an accuracy of 99.78% and an AUC of 0.999. However, the deep learning Bi-LSTM network surpassed both methods, achieving an accuracy of 99.89% and an AUC of 1.0000. These findings suggest that the proposed methodology, combining hand-crafted features and deep learning, holds significant promise for enhancing early lung cancer detection and ultimately improving diagnosis systems.

Suggested Citation

  • Su Diao & Yajie Wan & Danyi Huang & Shijia Huang & Touseef Sadiq & Mohammad Shahbaz Khan & Lal Hussain & Badr S Alkahtani & Tehseen Mazhar, 2025. "Optimizing Bi-LSTM networks for improved lung cancer detection accuracy," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-24, February.
  • Handle: RePEc:plo:pone00:0316136
    DOI: 10.1371/journal.pone.0316136
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316136
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0316136&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0316136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    2. Kanchan Pradhan & Priyanka Chawla, 2020. "Medical Internet of things using machine learning algorithms for lung cancer detection," Journal of Management Analytics, Taylor & Francis Journals, vol. 7(4), pages 591-623, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    3. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    5. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    6. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    7. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    8. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    9. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    10. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    11. Dong, Xianzhou & Guo, Weiyong & Zhou, Cheng & Luo, Yongqiang & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2024. "Hybrid model for robust and accurate forecasting building electricity demand combining physical and data-driven methods," Energy, Elsevier, vol. 311(C).
    12. Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).
    13. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    14. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    15. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    16. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    17. Caroline L Alves & Rubens Gisbert Cury & Kirstin Roster & Aruane M Pineda & Francisco A Rodrigues & Christiane Thielemann & Manuel Ciba, 2022. "Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-26, December.
    18. José M. Liceaga-Ortiz-De-La-Peña & Jorge A. Ruiz-Vanoye & Juan M. Xicoténcatl-Pérez & Ocotlán Díaz-Parra & Alejandro Fuentes-Penna & Ricardo A. Barrera-Cámara & Daniel Robles-Camarillo & Marco A. Márq, 2025. "Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services," Energies, MDPI, vol. 18(12), pages 1-33, June.
    19. Borch, Christian, 2022. "Machine learning, knowledge risk, and principal-agent problems in automated trading," Technology in Society, Elsevier, vol. 68(C).
    20. Xiaoyu Liu & Jiangfeng Song & Hai Tao & Peng Wang & Haihua Mo & Wenjie Du, 2025. "Quarter-Hourly Power Load Forecasting Based on a Hybrid CNN-BiLSTM-Attention Model with CEEMDAN, K-Means, and VMD," Energies, MDPI, vol. 18(11), pages 1-29, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0316136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.