IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315842.html
   My bibliography  Save this article

Solving the maximum cut problem using Harris Hawk Optimization algorithm

Author

Listed:
  • Md Rafiqul Islam
  • Md Shahidul Islam
  • Pritam Khan Boni
  • Aldrin Saurov Sarker
  • Md Asif Anam

Abstract

The objective of the max-cut problem is to cut any graph in such a way that the total weight of the edges that are cut off is maximum in both subsets of vertices that are divided due to the cut of the edges. Although it is an elementary graph partitioning problem, it is one of the most challenging combinatorial optimization-based problems, and tons of application areas make this problem highly admissible. Due to its admissibility, the problem is solved using the Harris Hawk Optimization algorithm (HHO). Though HHO effectively solved some engineering optimization problems, is sensitive to parameter settings and may converge slowly, potentially getting trapped in local optima. Thus, HHO and some additional operators are used to solve the max-cut problem. Crossover and refinement operators are used to modify the fitness of the hawk in such a way that they can provide precise results. A mutation mechanism along with an adjustment operator has improvised the outcome obtained from the updated hawk. To accept the potential result, the acceptance criterion has been used, and then the repair operator is applied in the proposed approach. The proposed system provided comparatively better outcomes on the G-set dataset than other state-of-the-art algorithms. It obtained 533 cuts more than the discrete cuckoo search algorithm in 9 instances, 1036 cuts more than PSO-EDA in 14 instances, and 1021 cuts more than TSHEA in 9 instances. But for four instances, the cuts are lower than PSO-EDA and TSHEA. Besides, the statistical significance has also been tested using the Wilcoxon signed rank test to provide proof of the superior performance of the proposed method. In terms of solution quality, MC-HHO can produce outcomes that are quite competitive when compared to other related state-of-the-art algorithms.

Suggested Citation

  • Md Rafiqul Islam & Md Shahidul Islam & Pritam Khan Boni & Aldrin Saurov Sarker & Md Asif Anam, 2024. "Solving the maximum cut problem using Harris Hawk Optimization algorithm," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-34, December.
  • Handle: RePEc:plo:pone00:0315842
    DOI: 10.1371/journal.pone.0315842
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315842
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315842&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ling, Ai-Fan & Xu, Cheng-Xian & Xu, Feng-Min, 2009. "A discrete filled function algorithm embedded with continuous approximation for solving max-cut problems," European Journal of Operational Research, Elsevier, vol. 197(2), pages 519-531, September.
    2. Rafael Martí & Abraham Duarte & Manuel Laguna, 2009. "Advanced Scatter Search for the Max-Cut Problem," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 26-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxing Zhu & Geng Lin & M. M. Ali, 2013. "Max- k -Cut by the Discrete Dynamic Convexized Method," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 27-40, February.
    2. Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
    3. Wang, Yang & Lü, Zhipeng & Glover, Fred & Hao, Jin-Kao, 2012. "Path relinking for unconstrained binary quadratic programming," European Journal of Operational Research, Elsevier, vol. 223(3), pages 595-604.
    4. Lu, Yongliang & Benlic, Una & Wu, Qinghua, 2018. "A memetic algorithm for the Orienteering Problem with Mandatory Visits and Exclusionary Constraints," European Journal of Operational Research, Elsevier, vol. 268(1), pages 54-69.
    5. Iain Dunning & Swati Gupta & John Silberholz, 2018. "What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 608-624, August.
    6. Qinghua Wu & Yang Wang & Fred Glover, 2020. "Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 74-89, January.
    7. Geng Lin & Wenxing Zhu, 2012. "A discrete dynamic convexized method for the max-cut problem," Annals of Operations Research, Springer, vol. 196(1), pages 371-390, July.
    8. A. D. López-Sánchez & J. Sánchez-Oro & M. Laguna, 2021. "A New Scatter Search Design for Multiobjective Combinatorial Optimization with an Application to Facility Location," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 629-642, May.
    9. Yong-Hyuk Kim & Zong Woo Geem & Yourim Yoon, 2025. "Population-Based Redundancy Control in Genetic Algorithms: Enhancing Max-Cut Optimization," Mathematics, MDPI, vol. 13(9), pages 1-21, April.
    10. Jesús Sánchez-Oro & Manuel Laguna & Rafael Martí & Abraham Duarte, 2016. "Scatter search for the bandpass problem," Journal of Global Optimization, Springer, vol. 66(4), pages 769-790, December.
    11. Cheng Lu & Zhibin Deng & Shu-Cherng Fang & Wenxun Xing, 2023. "A New Global Algorithm for Max-Cut Problem with Chordal Sparsity," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 608-638, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.