IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310454.html
   My bibliography  Save this article

A spatio-temporal methodology for greenhouse microclimatic mapping

Author

Listed:
  • Elia Brentarolli
  • Silvia Locatelli
  • Carlo Nicoletto
  • Paolo Sambo
  • Davide Quaglia
  • Riccardo Muradore

Abstract

Greenhouse internal microclimate has been proven to be non-homogeneous in many aspects. However, this variability is only sometimes considered by greenhouse models, which often calculate climatic variables without any spatial reference. Farmers, on the other hand, may wish to have these differences highlighted as they could lead to aimed actions only for a specific area of the greenhouse, while at the same time, they are not willing to invest in sensors to be installed everywhere. This paper presents a data-driven methodology to generate a virtual 2D map of a greenhouse, which allows farmers to control any critical parameter they desire with minimum investment, as monitoring is done via soft sensing with only a few actual sensors. The proposed flow starts with a set of temporary sensors placed in the points of interest; then, a model for each of them is developed via linear regression and, finally, a map of the entire area can be derived by interpolating values from these models. This allows the generation of accurate models at a reduced cost as temporary sensors can be reused at other locations. The methodology has been tested on adjacent greenhouses and in two farms, where temperature and other climatic variables have been monitored. Experimental results show that the proposed methodology can reach an adjusted R2 value of 98% for predicting values in different greenhouse locations.

Suggested Citation

  • Elia Brentarolli & Silvia Locatelli & Carlo Nicoletto & Paolo Sambo & Davide Quaglia & Riccardo Muradore, 2024. "A spatio-temporal methodology for greenhouse microclimatic mapping," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-23, September.
  • Handle: RePEc:plo:pone00:0310454
    DOI: 10.1371/journal.pone.0310454
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310454
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310454&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodora Karanisa & Alexandre Amato & Renee Richer & Sara Abdul Majid & Cynthia Skelhorn & Sami Sayadi, 2021. "Agricultural Production in Qatar’s Hot Arid Climate," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    2. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    3. Aaron Chimbelya Siyunda & Emmanuel Chikalipa & Tibonge Mfune & Rodrick Habvumba, 2022. "Digitalizing Agriculture for Sustainable Crop production," International Journal of Science and Business, IJSAB International, vol. 11(1), pages 55-61.
    4. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    5. Larisa Hrustek, 2020. "Sustainability Driven by Agriculture through Digital Transformation," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    6. Blaud, Pierre Clement & Haurant, Pierrick & Chevrel, Philippe & Claveau, Fabien & Mouraud, Anthony, 2023. "Multi-flow optimization of a greenhouse system: A hierarchical control approach," Applied Energy, Elsevier, vol. 351(C).
    7. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    8. Chen, Wei-Han & Mattson, Neil S. & You, Fengqi, 2022. "Intelligent control and energy optimization in controlled environment agriculture via nonlinear model predictive control of semi-closed greenhouse," Applied Energy, Elsevier, vol. 320(C).
    9. Mahmood, Farhat & Govindan, Rajesh & Bermak, Amine & Yang, David & Al-Ansari, Tareq, 2023. "Data-driven robust model predictive control for greenhouse temperature control and energy utilisation assessment," Applied Energy, Elsevier, vol. 343(C).
    10. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    11. Li, Hangxin & Wang, Shengwei, 2022. "Comparative assessment of alternative MPC strategies using real meteorological data and their enhancement for optimal utilization of flexibility-resources in buildings," Energy, Elsevier, vol. 244(PA).
    12. Gianluca Serale & Luca Gnoli & Emanuele Giraudo & Enrico Fabrizio, 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses," Energies, MDPI, vol. 14(1), pages 1-19, January.
    13. Chiara Bersani & Marco Fossa & Antonella Priarone & Roberto Sacile & Enrico Zero, 2021. "Model Predictive Control versus Traditional Relay Control in a High Energy Efficiency Greenhouse," Energies, MDPI, vol. 14(11), pages 1-21, June.
    14. Chiara Bersani & Carmelina Ruggiero & Roberto Sacile & Abdellatif Soussi & Enrico Zero, 2022. "Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0," Energies, MDPI, vol. 15(10), pages 1-30, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.