IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0298622.html
   My bibliography  Save this article

Data-driven mathematical simulation analysis of emergency evacuation time in smart station’s operations management

Author

Listed:
  • Yang Hui
  • Qiang Yu
  • Hui Peng

Abstract

This research establishes an emergency evacuation time model specifically designed for subway stations with complex structures. The model takes into account multiple factors, including passenger flow rate, subway facility parameters, and crowd density, to accurately assess evacuation times. It considers the impact of horizontal walking distance, flow rate, subway train size, and stair parameters on the overall evacuation process. By identifying bottleneck points such as gates, car doors, and stairs, the model facilitates the evaluation of evacuation capacity and the formulation of effective evacuation plans, particularly in multiline subway transfer stations. The good consistency is achieved between the calculated evacuation time and simulated results using the Pathfinder software (with the relative error of 5.4%). To address urban traffic congestion and enhance subway station safety, the study recommends implemented measures for emergency diversion and passenger flow control. Additionally, the research presents characteristic mathematical models for various evacuation routes by considering the structural and temporal characteristics of metro systems. These models provide valuable guidance for conducting large-scale passenger evacuation simulations in complex environments. Future research can further enhance the model by incorporating psychological factors, evacuation signage, and strategies for vulnerable populations. Overall, this study contributes to a better understanding of evacuation dynamics and provides practical insights to improve safety and efficiency in subway systems.

Suggested Citation

  • Yang Hui & Qiang Yu & Hui Peng, 2024. "Data-driven mathematical simulation analysis of emergency evacuation time in smart station’s operations management," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-16, February.
  • Handle: RePEc:plo:pone00:0298622
    DOI: 10.1371/journal.pone.0298622
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298622
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298622&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0298622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Morandi, 2024. "Bridging the user equilibrium and the system optimum in static traffic assignment: a review," 4OR, Springer, vol. 22(1), pages 89-119, March.
    2. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    3. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Ehrgott, Matthias & Wang, Judith Y.T. & Watling, David P., 2015. "On multi-objective stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 704-717.
    5. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    6. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Lee, Enoch & Kawakita, Takuya & Huai, Yue & Lo, Hong K. & Zhang, Anming, 2024. "Airline and high-speed rail collaboration and competition under travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    8. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    9. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
    10. Schindler, Mirjam & Wang, Judith Y.T. & Connors, Richard D., 2021. "A two-stage residential location and transport mode choice model with exposure to traffic-induced air pollution," Journal of Transport Geography, Elsevier, vol. 93(C).
    11. Qiang Tu & Han He & Xiaomin Lai & Chuan Jiang & Zhanji Zheng, 2024. "Identifying Critical Links in Degradable Road Networks Using a Traffic Demand-Based Indicator," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    12. Zhaoqi Zang & Richard Batley & Xiangdong Xu & David Z. W. Wang, 2022. "On the value of distribution tail in the valuation of travel time variability," Papers 2207.06293, arXiv.org, revised Dec 2023.
    13. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    14. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    15. Liang Shen & Feiran Wang & Yueyuan Chen & Xinyi Lv & Zongliang Wen, 2022. "A Reliability-Based Stochastic Traffic Assignment Model for Signalized Traffic Network with Consideration of Link Travel Time Correlations," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    16. Di, Zhen & Yang, Lixing, 2020. "Reversible lane network design for maximizing the coupling measure between demand structure and network structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    18. Bao, Yue & Gao, Ziyou & Xu, Meng & Sun, Huijun & Yang, Hai, 2015. "Travel mental budgeting under road toll: An investigation based on user equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 1-17.
    19. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    20. Michael W. Levin & Melissa Duell & S. Travis Waller, 2020. "Arrival Time Reliability in Strategic User Equilibrium," Networks and Spatial Economics, Springer, vol. 20(3), pages 803-831, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0298622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.