IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0297445.html
   My bibliography  Save this article

Using spatio-temporal graph neural networks to estimate fleet-wide photovoltaic performance degradation patterns

Author

Listed:
  • Yangxin Fan
  • Raymond Wieser
  • Xuanji Yu
  • Yinghui Wu
  • Laura S Bruckman
  • Roger H French

Abstract

Accurate estimation of photovoltaic (PV) system performance is crucial for determining its feasibility as a power generation technology and financial asset. PV-based energy solutions offer a viable alternative to traditional energy resources due to their superior Levelized Cost of Energy (LCOE). A significant challenge in assessing the LCOE of PV systems lies in understanding the Performance Loss Rate (PLR) for large fleets of PV systems. Estimating the PLR of PV systems becomes increasingly important in the rapidly growing PV industry. Precise PLR estimation benefits PV users by providing real-time monitoring of PV module performance, while explainable PLR estimation assists PV manufacturers in studying and enhancing the performance of their products. However, traditional PLR estimation methods based on statistical models have notable drawbacks. Firstly, they require user knowledge and decision-making. Secondly, they fail to leverage spatial coherence for fleet-level analysis. Additionally, these methods inherently assume the linearity of degradation, which is not representative of real world degradation. To overcome these challenges, we propose a novel graph deep learning-based decomposition method called the Spatio-Temporal Graph Neural Network for fleet-level PLR estimation (PV-stGNN-PLR). PV-stGNN-PLR decomposes the power timeseries data into aging and fluctuation components, utilizing the aging component to estimate PLR. PV-stGNN-PLR exploits spatial and temporal coherence to derive PLR estimation for all systems in a fleet and imposes flatness and smoothness regularization in loss function to ensure the successful disentanglement between aging and fluctuation. We have evaluated PV-stGNN-PLR on three simulated PV datasets consisting of 100 inverters from 5 sites. Experimental results show that PV-stGNN-PLR obtains a reduction of 33.9% and 35.1% on average in Mean Absolute Percent Error (MAPE) and Euclidean Distance (ED) in PLR degradation pattern estimation compared to the state-of-the-art PLR estimation methods.

Suggested Citation

  • Yangxin Fan & Raymond Wieser & Xuanji Yu & Yinghui Wu & Laura S Bruckman & Roger H French, 2024. "Using spatio-temporal graph neural networks to estimate fleet-wide photovoltaic performance degradation patterns," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-14, February.
  • Handle: RePEc:plo:pone00:0297445
    DOI: 10.1371/journal.pone.0297445
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297445
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297445&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0297445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    2. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    3. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    4. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    5. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    6. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    7. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    8. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    9. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    10. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    11. Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2021. "Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network," Energies, MDPI, vol. 14(11), pages 1-21, May.
    12. Youssouf Mouleloued & Kamel Kara & Aissa Chouder & Abdelhadi Aouaichia & Santiago Silvestre, 2025. "Euclidean Distance-Based Tree Algorithm for Fault Detection and Diagnosis in Photovoltaic Systems," Energies, MDPI, vol. 18(7), pages 1-24, April.
    13. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    14. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kais Bouzrara, 2023. "One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    15. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    16. Das, Saborni & Hazra, Abhik & Basu, Mousumi, 2018. "Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance," Renewable Energy, Elsevier, vol. 118(C), pages 452-467.
    17. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    18. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    19. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    20. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.