IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3029-d560891.html
   My bibliography  Save this article

Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network

Author

Listed:
  • Yichen Zhou

    (College of Qianhu, Nanchang University, Nanchang 330031, China)

  • Xiaohui Yang

    (College of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Lingyu Tao

    (College of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Li Yang

    (College of Information Engineering, Nanchang University, Nanchang 330031, China)

Abstract

Dissolved gas analysis (DGA) based in insulating oil has become a more mature method in the field of transformer fault diagnosis. However, due to the complexity and diversity of fault types, the traditional modeling method based on oil sample analysis is struggling to meet the industrial demand for diagnostic accuracy. In order to solve this problem, this paper proposes a probabilistic neural network (PNN)-based fault diagnosis model for power transformers and optimizes the smoothing factor of the pattern layer of PNN by the improved gray wolf optimizer (IGWO) to improve the classification accuracy and robustness of PNN. The standard GWO easily falls into the local optimum because the update mechanism is too single. The update strategy proposed in this paper enhances the convergence ability and exploration ability of the algorithm, which greatly alleviates the dilemma that GWO is prone to fall into local optimum when dealing with complex data. In this paper, a reliability analysis of thirteen diagnostic methods is conducted using 555 transformer fault samples collected from Jiangxi Power Supply Company, China. The results show that the diagnostic accuracy of the IGWO-PNN model reaches 99.71%, which is much higher than that of the traditional IEC (International Electrotechnical Commission) three-ratio method. Compared with other neural network models, IGWO-PNN also has higher diagnostic accuracy and stability, and is more applicable to the field of transformer fault diagnosis.

Suggested Citation

  • Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2021. "Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network," Energies, MDPI, vol. 14(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3029-:d:560891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2023. "Correction: Zhou et al. Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network. Energies 2021, 14 , 3029," Energies, MDPI, vol. 16(7), pages 1-3, April.
    2. Mohammad H. Nadimi-Shahraki & Shokooh Taghian & Seyedali Mirjalili & Laith Abualigah, 2022. "Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    3. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    4. Ruijun Guo & Guobin Zhang & Qian Zhang & Lei Zhou & Haicun Yu & Meng Lei & You Lv, 2021. "An Adaptive Early Fault Detection Model of Induced Draft Fans Based on Multivariate State Estimation Technique," Energies, MDPI, vol. 14(16), pages 1-18, August.
    5. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    2. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    3. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    4. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    5. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    6. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    7. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    8. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    9. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    10. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    11. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    12. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kais Bouzrara, 2023. "One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    13. Nien-Che Yang & Harun Ismail, 2022. "Voting-Based Ensemble Learning Algorithm for Fault Detection in Photovoltaic Systems under Different Weather Conditions," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    14. Das, Saborni & Hazra, Abhik & Basu, Mousumi, 2018. "Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance," Renewable Energy, Elsevier, vol. 118(C), pages 452-467.
    15. Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
    16. Belaout, A. & Krim, F. & Mellit, A. & Talbi, B. & Arabi, A., 2018. "Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification," Renewable Energy, Elsevier, vol. 127(C), pages 548-558.
    17. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    18. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.
    19. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    20. Fezai, R. & Mansouri, M. & Trabelsi, M. & Hajji, M. & Nounou, H. & Nounou, M., 2019. "Online reduced kernel GLRT technique for improved fault detection in photovoltaic systems," Energy, Elsevier, vol. 179(C), pages 1133-1154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3029-:d:560891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.