IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0293814.html
   My bibliography  Save this article

Gas explosion early warning method in coal mines by intelligent mining system and multivariate data analysis

Author

Listed:
  • Hongxia Li
  • Yiru Zhang
  • Wanli Yang

Abstract

In order to predict gas explosion disasters rapidly and accurately, this study utilizes real-time data collected from the intelligent mining system, including mine safety monitoring, personnel positioning, and video surveillance. Firstly, the coal mine disaster system is decomposed into sub-systems of disaster-causing factors, disaster-prone environments, and vulnerable bodies, establishing an early warning index system for gas explosion disasters. Then, a training set is randomly selected from known coal mine samples, and the training sample set is processed and analyzed using Matlab software. Subsequently, a training model based on the random forest classification algorithm is constructed, and the model is optimized using two parameters, Mtry and Ntree. Finally, the constructed random forest-based gas explosion early warning model is compared with a classification model based on the support vector machine (SVM) algorithm. Specific coal mine case studies are conducted to verify the applicability of the optimized random forest algorithm. The experimental results demonstrate that: The optimized random forest model has achieved 100% accuracy in predicting gas explosion disaster of coal mines, while the accuracy of SVM model is only 75%. The optimized model also shows lower model error and relative error, which proves its high performance in early warning of coal mine gas explosion. This study innovatively combines intelligent mining system with multidimensional data analysis, which provides a new method for coal mine safety management.

Suggested Citation

  • Hongxia Li & Yiru Zhang & Wanli Yang, 2023. "Gas explosion early warning method in coal mines by intelligent mining system and multivariate data analysis," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0293814
    DOI: 10.1371/journal.pone.0293814
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293814
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293814&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0293814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen, Hu & Yan, Li & Jin, Yongfei & Wang, Zhipeng & Guo, Jun & Deng, Jun, 2023. "Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning," Energy, Elsevier, vol. 264(C).
    2. Arif Emre Dursun, 2020. "Statistical analysis of methane explosions in Turkey’s underground coal mines and some recommendations for the prevention of these accidents: 2010–2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 329-351, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Congliang & Zhang, Qi, 2022. "Chain explosion behaviors induced by discontinuous methane/air distribution," Energy, Elsevier, vol. 252(C).
    2. Jinjia Zhang & Yiping Zeng & Genserik Reniers & Jie Liu, 2022. "Analysis of the Interaction Mechanism of the Risk Factors of Gas Explosions in Chinese Underground Coal Mines," IJERPH, MDPI, vol. 19(2), pages 1-18, January.
    3. Siddhartha Roy & Devi Prasad Mishra & Ram Madhab Bhattacharjee & Hemant Agrawal, 2022. "Genetic programming for prediction of heat stress hazard in underground coal mine environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2527-2543, December.
    4. Wang, Yuxin & Fu, Gui & Lyu, Qian & Wu, Yali & Jia, Qinsong & Yang, Xiaoyu & Li, Xiao, 2022. "Reform and development of coal mine safety in China: An analysis from government supervision, technical equipment, and miner education," Resources Policy, Elsevier, vol. 77(C).
    5. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    6. Dong, Fangying & Yin, Huiyong & Cheng, Wenju & Zhang, Chao & Zhang, Danyang & Ding, Haixiao & Lu, Chang & Wang, Yin, 2024. "Quantitative prediction model and prewarning system of water yield capacity (WYC) from coal seam roof based on deep learning and joint advanced detection," Energy, Elsevier, vol. 290(C).
    7. Ma, Dong & Qin, Botao & Zhong, Xiaoxing & Sheng, Peng & Yin, Chungen, 2023. "Effect of flammable gases produced from spontaneous smoldering combustion of coal on methane explosion in coal mines," Energy, Elsevier, vol. 279(C).
    8. Qingwei Xu & Kaili Xu, 2021. "Analysis of the Characteristics of Fatal Accidents in the Construction Industry in China Based on Statistical Data," IJERPH, MDPI, vol. 18(4), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0293814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.