IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0290885.html
   My bibliography  Save this article

The unit ratio-extended Weibull family and the dropout rate in Brazilian undergraduate courses

Author

Listed:
  • Fernando A Peña-Ramírez
  • Renata R Guerra
  • Charles Peixoto Mafalda

Abstract

We propose a new family of distributions, so-called the unit ratio-extended Weibull family (U R E W). It is derived from ratio transformation in an extended Weibull random variable. The use of this transformation is a novelty of the work since it has been less explored than the exponential and has not yet been studied within the extended Weibull class. Moreover, we offer a valuable alternative to model double-bounded variables on the unit interval. Five U R E W special models are studied in detail, namely the: i) unit ratio-Gompertz; ii) unit ratio-Burr XII; iii) unit ratio-Lomax; v) unit ratio-Rayleigh, and vi) unit ratio-Weibull distributions. We propose a quantile-parameterization for the new family. The maximum likelihood estimators (MLEs) are presented. A Monte Carlo study is performed to evaluate the behavior of the MLEs of unit ratio-Gompertz and unit ratio-Rayleigh distributions. This last model has closed-form and approximately unbiased MLE for small sample sizes. Further, the U R E W submodels are adjusted to the dropout rate in Brazilian undergraduate courses. We focus on the areas of civil engineering, economics, computer sciences, and control engineering. The applications show that the new family is suitable for modeling educational data and may provide effective alternatives compared to other usual unit models, such as the Beta, Kumaraswamy, and unit gamma distributions. They can also outperform some recent contributions in the unit distribution literature. Thus, the U R E W family can provide competitive alternatives when those models are unsuitable.

Suggested Citation

  • Fernando A Peña-Ramírez & Renata R Guerra & Charles Peixoto Mafalda, 2023. "The unit ratio-extended Weibull family and the dropout rate in Brazilian undergraduate courses," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-22, November.
  • Handle: RePEc:plo:pone00:0290885
    DOI: 10.1371/journal.pone.0290885
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290885
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0290885&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0290885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tatiane Fontana Ribeiro & Fernando A Peña-Ramírez & Renata Rojas Guerra & Gauss M Cordeiro, 2022. "Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-25, November.
    2. Barndorff-Nielsen, O. E. & Jørgensen, B., 1991. "Some parametric models on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 106-116, October.
    3. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    4. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alisson de Oliveira Silva & Jonas Weverson de Ararújo Silva & Patrícia L Espinheira, 2022. "Bootstrap-based inferential improvements to the simplex nonlinear regression model," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-27, August.
    2. Josmar Mazucheli & Bruna Alves & Mustafa Ç. Korkmaz & Víctor Leiva, 2022. "Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    3. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
    4. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
    5. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    6. Fahimeh Tourani-Farani & Zeynab Aghabazaz & Iraj Kazemi, 2025. "A class of transformed joint quantile time series models with applications to health studies," Computational Statistics, Springer, vol. 40(3), pages 1147-1170, March.
    7. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    8. Tatiane Fontana Ribeiro & Fernando A Peña-Ramírez & Renata Rojas Guerra & Gauss M Cordeiro, 2022. "Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-25, November.
    9. Guilherme Pumi & Taiane Schaedler Prass & Cleiton Guollo Taufemback, 2024. "Unit-Weibull autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 204-229, March.
    10. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    11. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    12. Abdul Ghaniyyu Abubakari & Suleman Nasiru & Christophe Chesneau, 2024. "A unit Weibull loss distribution with quantile regression and practical applications to actuarial science," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(4), pages 1-29.
    13. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    14. Francesca Condino & Filippo Domma, 2023. "Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    15. Artur J. Lemonte & Germán Moreno-Arenas, 2020. "On a heavy-tailed parametric quantile regression model for limited range response variables," Computational Statistics, Springer, vol. 35(1), pages 379-398, March.
    16. Suelena S. Rocha & Patrícia L. Espinheira & Francisco Cribari‐Neto, 2021. "Residual and local influence analyses for unit gamma regressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 137-160, May.
    17. Danilo V. Silva & Hatice Tul Kubra Akdur & Gilberto A. Paula, 2023. "Analysis of correlated unit-Lindley data based on estimating equations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1477-1508, December.
    18. Rodrigues, Antonio Carlos & Martins, Ricardo Silveira & Wanke, Peter Fernandes & Siegler, Janaina, 2018. "Efficiency of specialized 3PL providers in an emerging economy," International Journal of Production Economics, Elsevier, vol. 205(C), pages 163-178.
    19. Abdelhakim Aknouche & Stefanos Dimitrakopoulos, 2023. "Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 393-417, July.
    20. David E. Giles, 2024. "New Goodness-of-Fit Tests for the Kumaraswamy Distribution," Stats, MDPI, vol. 7(2), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0290885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.