IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0276695.html
   My bibliography  Save this article

Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses

Author

Listed:
  • Tatiane Fontana Ribeiro
  • Fernando A Peña-Ramírez
  • Renata Rojas Guerra
  • Gauss M Cordeiro

Abstract

In many practical situations, there is an interest in modeling bounded random variables in the interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continuous models to deal with the uncertainty involved by variables of this type. This paper proposes a new quantile regression model based on an alternative parameterization of the unit Burr XII (UBXII) distribution. For the UBXII distribution and its associated regression, we obtain score functions and observed information matrices. We use the maximum likelihood method to estimate the parameters of the regression model, and conduct a Monte Carlo study to evaluate the performance of its estimates in samples of finite size. Furthermore, we present general diagnostic analysis and model selection techniques for the regression model. We empirically show its importance and flexibility through an application to an actual data set, in which the dropout proportion of Brazilian undergraduate animal sciences courses is analyzed. We use a statistical learning method for comparing the proposed model with the beta, Kumaraswamy, and unit-Weibull regressions. The results show that the UBXII regression provides the best fit and the most accurate predictions. Therefore, it is a valuable alternative and competitive to the well-known regressions for modeling double-bounded variables in the unit interval.

Suggested Citation

  • Tatiane Fontana Ribeiro & Fernando A Peña-Ramírez & Renata Rojas Guerra & Gauss M Cordeiro, 2022. "Another unit Burr XII quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-25, November.
  • Handle: RePEc:plo:pone00:0276695
    DOI: 10.1371/journal.pone.0276695
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276695
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0276695&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0276695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    2. Eline Sneyers & Kristof De Witte, 2017. "The interaction between dropout, graduation rates and quality ratings in universities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(4), pages 416-430, April.
    3. Josmar Mazucheli & Bruna Alves & Mustafa Ç. Korkmaz & Víctor Leiva, 2022. "Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    4. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    5. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    6. repec:plo:pone00:0218796 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guilherme Pumi & Taiane Schaedler Prass & Cleiton Guollo Taufemback, 2024. "Unit-Weibull autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 204-229, March.
    2. Abdul Ghaniyyu Abubakari & Suleman Nasiru & Christophe Chesneau, 2024. "A unit Weibull loss distribution with quantile regression and practical applications to actuarial science," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(4), pages 1-29.
    3. Josmar Mazucheli & Bruna Alves & Mustafa Ç. Korkmaz & Víctor Leiva, 2022. "Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    4. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
    5. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    6. Alisson de Oliveira Silva & Jonas Weverson de Ararújo Silva & Patrícia L Espinheira, 2022. "Bootstrap-based inferential improvements to the simplex nonlinear regression model," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-27, August.
    7. Francesca Condino & Filippo Domma, 2023. "Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    8. Guillermo Martínez-Flórez & Rafael B. Azevedo-Farias & Roger Tovar-Falón, 2022. "New Class of Unit-Power-Skew-Normal Distribution and Its Associated Regression Model for Bounded Responses," Mathematics, MDPI, vol. 10(17), pages 1-24, August.
    9. Artur J. Lemonte & Germán Moreno-Arenas, 2020. "On a heavy-tailed parametric quantile regression model for limited range response variables," Computational Statistics, Springer, vol. 35(1), pages 379-398, March.
    10. Suelena S. Rocha & Patrícia L. Espinheira & Francisco Cribari‐Neto, 2021. "Residual and local influence analyses for unit gamma regressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 137-160, May.
    11. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
    12. David E. Giles, 2024. "New Goodness-of-Fit Tests for the Kumaraswamy Distribution," Stats, MDPI, vol. 7(2), pages 1-16, April.
    13. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    14. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    15. Mhamed Ben Salah & Cédric Chambru & Maleke Fourati, 2022. "The colonial legacy of education: evidence from of Tunisia," ECON - Working Papers 411, Department of Economics - University of Zurich, revised Sep 2024.
    16. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    17. Sokolova, Maria V., 2016. "Exchange Rates, International Trade and Growth: Re-Evaluation of Undervaluation," Conference papers 332790, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    19. Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
    20. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0276695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.