IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0288200.html
   My bibliography  Save this article

Critical and steady-state characteristics of delay propagation in an airport network

Author

Listed:
  • Hong-Guang Yao
  • Hang Zhang

Abstract

In this work, we established a density equation for delayed airports to investigate the horizontal propagation mechanism of delays among airports in an airport network. We explored the critical conditions, steady-state features, and scale of the delay propagation, and designed a simulation system to verify the accuracy of the results. The results indicated that, due to the no-table scale-free feature of an airport network, the critical value of delay propagation is extremely small, and delays are prone to propagate among airports. Furthermore, as delay propagation reaches a steady state in an aviation network, the degree value of the node becomes highly correlated with its delay state. Hub airports with high degree values are the most prone to being affected by delay propagation. In addition, the number of airports that are initially delayed influences the time required for delay propagation to reach a steady state. Specifically, if there are fewer initially delayed airports, a longer time is required to reach a steady state. In the steady state, the delay ratios of airports with different degree values in the network converge to a balance point. The delay degree of the node is highly positively correlated with the delay propagation rate in the network, but negatively related to the degree distribution index of the network.

Suggested Citation

  • Hong-Guang Yao & Hang Zhang, 2023. "Critical and steady-state characteristics of delay propagation in an airport network," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0288200
    DOI: 10.1371/journal.pone.0288200
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288200
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288200&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0288200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junqiang Liu, 2020. "Flights Assignment Model of Multiple Airports Based on Game Theory and CDM Mechanism," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, January.
    2. Sai Ho Chung & Hoi Lam Ma & Hing Kai Chan, 2017. "Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1443-1458, August.
    3. Huawei Wang & Yuxiao Luo & Zhijian Shi, 2013. "Real-Time Gate Reassignment Based on Flight Delay Feature in Hub Airport," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qi & Mao, Jianing & Wen, Xin & Wallace, Stein W. & Deveci, Muhammet, 2025. "Flight, aircraft, and crew integrated recovery policies for airlines - A deep reinforcement learning approach," Transport Policy, Elsevier, vol. 160(C), pages 245-258.
    2. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    3. Eltoukhy, Abdelrahman E.E. & Wang, Z.X. & Chan, Felix T.S. & Fu, X., 2019. "Data analytics in managing aircraft routing and maintenance staffing with price competition by a Stackelberg-Nash game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 143-168.
    4. Wen, Xin & Sun, Xuting & Sun, Yige & Yue, Xiaohang, 2021. "Airline crew scheduling: Models and algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Choi, Tsan-Ming & Wen, Xin & Sun, Xuting & Chung, Sai-Ho, 2019. "The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 178-191.
    6. Tsan‐Ming Choi & James H. Lambert, 2017. "Advances in Risk Analysis with Big Data," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1435-1442, August.
    7. Wen, Xin & Ma, Hoi-Lam & Chung, Sai-Ho & Khan, Waqar Ahmed, 2020. "Robust airline crew scheduling with flight flying time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    8. Wen, Xin & Sun, Xuting & Ma, Hoi-Lam & Sun, Yige, 2022. "A column generation approach for operational flight scheduling and aircraft maintenance routing," Journal of Air Transport Management, Elsevier, vol. 105(C).
    9. Martina Zámková & Stanislav Rojík & Martin Prokop & Radek Stolín, 2022. "Factors Affecting the International Flight Delays and Their Impact on Airline Operation and Management and Passenger Compensations Fees in Air Transport Industry: Case Study of a Selected Airlines in ," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    10. Yi‐Jen (Ian) Ho & Siyuan Liu & Jingchuan Pu & Dian Zhang, 2022. "Is it all about you or your driving? Designing IoT‐enabled risk assessments," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4205-4222, November.
    11. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    12. He, Yonghuan & Ma, Hoi-Lam & Park, Woo-Yong & Liu, Shi Qiang & Chung, Sai-Ho, 2023. "Maximizing robustness of aircraft routing with heterogeneous maintenance tasks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    13. Xin Wen & Sai-Ho Chung & Hoi-Lam Ma & Waqar Ahmed Khan, 2024. "Airline crew scheduling with sustainability enhancement by data analytics under circular economy," Annals of Operations Research, Springer, vol. 342(1), pages 959-985, November.
    14. Vojtech Graf & Dusan Teichmann & Michal Dorda & Lenka Kontrikova, 2021. "Dynamic Model of Contingency Flight Crew Planning Extending to Crew Formation," Mathematics, MDPI, vol. 9(17), pages 1-28, September.
    15. Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & Felix T. S. Chan & Mohammad A. M. Abdel-Aal, 2020. "Data Analytics for Predicting COVID-19 Cases in Top Affected Countries: Observations and Recommendations," IJERPH, MDPI, vol. 17(19), pages 1-25, September.
    16. Khan, Waqar Ahmed & Chung, Sai-Ho & Ma, Hoi-Lam & Liu, Shi Qiang & Chan, Ching Yuen, 2019. "A novel self-organizing constructive neural network for estimating aircraft trip fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 72-96.
    17. Muzaffer Buyruk & Ertan Güner, 2022. "Personalization in airline revenue management: an overview and future outlook," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 129-139, April.
    18. Ma, Hoi-Lam & Sun, Yige & Chung, Sai-Ho & Chan, Hing Kai, 2022. "Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    20. Chung, Sai-Ho, 2021. "Applications of smart technologies in logistics and transport: A review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0288200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.