IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285212.html
   My bibliography  Save this article

A distributed computing model for big data anonymization in the networks

Author

Listed:
  • Farough Ashkouti
  • Keyhan Khamforoosh

Abstract

Recently big data and its applications had sharp growth in various fields such as IoT, bioinformatics, eCommerce, and social media. The huge volume of data incurred enormous challenges to the architecture, infrastructure, and computing capacity of IT systems. Therefore, the compelling need of the scientific and industrial community is large-scale and robust computing systems. Since one of the characteristics of big data is value, data should be published for analysts to extract useful patterns from them. However, data publishing may lead to the disclosure of individuals’ private information. Among the modern parallel computing platforms, Apache Spark is a fast and in-memory computing framework for large-scale data processing that provides high scalability by introducing the resilient distributed dataset (RDDs). In terms of performance, Due to in-memory computations, it is 100 times faster than Hadoop. Therefore, Apache Spark is one of the essential frameworks to implement distributed methods for privacy-preserving in big data publishing (PPBDP). This paper uses the RDD programming of Apache Spark to propose an efficient parallel implementation of a new computing model for big data anonymization. This computing model has three-phase of in-memory computations to address the runtime, scalability, and performance of large-scale data anonymization. The model supports partition-based data clustering algorithms to preserve the λ-diversity privacy model by using transformation and actions on RDDs. Therefore, the authors have investigated Spark-based implementation for preserving the λ-diversity privacy model by two designed City block and Pearson distance functions. The results of the paper provide a comprehensive guideline allowing the researchers to apply Apache Spark in their own researches.

Suggested Citation

  • Farough Ashkouti & Keyhan Khamforoosh, 2023. "A distributed computing model for big data anonymization in the networks," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-21, April.
  • Handle: RePEc:plo:pone00:0285212
    DOI: 10.1371/journal.pone.0285212
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285212
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285212&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rashidi, Rahim & Khamforoosh, Keyhan & Sheikhahmadi, Amir, 2020. "An analytic approach to separate users by introducing new combinations of initial centers of clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahim Rashidi & Keyhan Khamforoosh & Amir Sheikhahmadi, 2022. "Proposing improved meta-heuristic algorithms for clustering and separating users in the recommender systems," Electronic Commerce Research, Springer, vol. 22(2), pages 623-648, June.
    2. Li, Yanbin & Zhao, Ke & Zhang, Feng, 2023. "Identification of key influencing factors to Chinese coal power enterprises transition in the context of carbon neutrality: A modified fuzzy DEMATEL approach," Energy, Elsevier, vol. 263(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.